Как работает система непосредственного впрыска топлива GDI. Особенности работы двигателя GDI А теперь можно записать или запомнить

Ни для кого не секрет, что двигатель прямого впрыска далеко не новинка. Первооткрывателями в данной области стали инженеры Mitsubishi. Первые из авто, оснащёнными двигателями GDI, были Mitubishi Galant и Legnum, продаваемые на внутреннем рынке Японии. Двигатель имел маркировку 4G93 и устанавливался на Mitsubishi Carisma, Colt, Galant, Lancer, Pajero iO и др.

Устройство двигателя GDI

Рассмотрим ближе, что же такое GDI или Gasoline Direct Injection , а по-русски – прямой впрыск топлива, и разберёмся, что это такое. Он пришёл на смену двигателям MPI , или Multi-Point Injection (распределённый впрыск), в которых топливо впрыскивается в каждый впускной канал и смесь образуется до попадания в цилиндр. А тем временем GDI ‒ это инжекторная система, при которой форсунки находятся в голове блока цилиндров, а впрыск топлива осуществляется не в коллектор, а напрямую в камеру сгорания двигателя.

На нынешнем этапе автомобилестроения непосредственный впрыск представляет собой самый прогрессивный тип питания бензинового двигателя.

Сейчас многие автоконцерны выпускают авто с данной системой, но у разных автопроизводителей она именуется по-разному. Непосредственный впрыск у Ford – EcoBoost, Mercedes – CGI, концерна VAG – FSI и TSI и т.д.

Принципиальными отличиями работы двигателя GDI от работы двигателей с распределённым впрыском являются :

  • подача топлива напрямую в цилиндры,
  • возможность применения сверх бедных смесей.

Смесь подаётся под давлением, что обеспечивается за счёт использования ТНВД , который развивает высокое давление в топливной рампе. За счёт этого сократилось в 6 раз (в сравнении с обычными инжекторными двигателями) время открытия форсунки до 0.5 мсек на холостых оборотах.

При использовании системы прямого впрыска уменьшается расход топлива приблизительно до 20 % и количество выбросов, но двигатели с данной системой менее терпимы к качеству используемого топлива.

Mitsubishi (Митсубиси) при создании двигателя GDI вобрали лучшее от бензинового и дизельного ДВС. Таким образом, здесь присутствуют, как и в любом другом бензиновом двигателе, свечи зажигания на каждый цилиндр, однако здесь появились топливный насос высокого давления (ТНВД) и форсунки на каждый цилиндр. Благодаря ТНВД бензин через форсунки впрыскивается в цилиндры под давлением около 5 Мпа, а форсунка осуществляет два типа впрыска бензина. Поэтому, если вы захотите перевести свой автомобиль на газ, то вам потребуются соответствующее оборудование и специальные настройки блока управления ГБО (в связи с расположением форсунок и пр.).

Режимы работы двигателя GDI

Технология прямого впрыска GDI

GDI двигатель способен работать в различных режимах (их три), каждый из которых зависит от преодолеваемой нагрузки. Рассмотрим эти режимы:

  • Режим работы на сверхбедной смеси . Включается данный режим, когда двигатель слабо нагружен. При нём впрыск топлива осуществляется в конце такта сжатия. Соотношение воздух/топливо в этом случае 40/1.
  • Режим работы на стехиометрической смеси . Этот режим включается, когда двигатель испытывает среднеинтенсивную нагрузку (например: разгон). Топливо подаётся на впуске, оно впрыскивается коническим факелом, заполняя цилиндр и охлаждая воздух в нём, что предупреждает детонацию.
  • Режим работы системы управления . При нажатии “тапки в пол” с малых оборотов, впрыск топлива осуществляется поэтапно, в две стадии. Малая часть топлива впрыскивается на впуске, охлаждая воздух в цилиндре. В цилиндре образуется сверх обеднённая смесь (60/1), которой не свойственны детонационные процессы. А под конец такта сжатия в цилиндр впрыскивается необходимое количество топлива, что “обогащает” топливно-воздушную смесь (12/1). При этом для детонации уже не остаётся времени.

В итоге, увеличилась степень сжатия до 12-13, а двигатель нормально функционирует на бедной смеси. Совместно с этим повысилась мощность двигателя, уменьшился расход топлива и уровень вредных выбросов в атмосферу.

А самые новые двигатели GDI от КИА оснащены турбонаддувом, а именуются они T-GDI. Так последние двигатели семейства Kappa отражают мировую тенденцию к “даунсайзингу”, что выражается в уменьшении объёмов двигателей вместе с увеличением их эффективности. Например, двигатель 1.0 T-GDI от КИА имеет мощность 120 л.с. и крутящий момент 171 Нм.

Особенности и недостатки двигателей GDI

Технология прямого впрыска является весьма актуальной, но она не избавлена от недостатков.
Итак, чем же плох двигатель GDI?

  • Крайне прихотливый к топливу, из-за использования топливного насоса высокого давления (аналогичный в дизельных авто). За счёт использования ТНВД двигатель реагирует не только на твёрдые частицы (песок и т.п.), но и на содержание серы, фосфора, железа и их соединений. Стоит отметить, что отечественное топливо имеет повышенное содержание серы.
  • Специфика форсунок. Так, в двигателях GDI форсунки размещаются прямо на цилиндры. Они должны обеспечивать высокое давление, но рабочий потенциал их невысок. Также невозможен их ремонт, а потому форсунки меняются целиком, что приносит владельцам немало дополнительных расходов.
  • Необходимость непрерывного контроля за качеством воздуха. Поэтому приходится постоянно контролировать чистоту воздушного фильтра.
  • На автомобилях с GDI первого поколения топливный насос высокого давления (ТНВД) имел малый ресурс.
  • Владельцам “немолодых” автомобилей необходимо использовать очиститель впуска двигателя раз в 2-3 года. В основном для этого используются спреи-аэрозоли (например: SHUMMA).

Несмотря на перечисленные минусы, многие автовладельцы утверждают, что при заправке автомобиля на проверенных АЗС 95-98 бензином (а не из Петькиного “трахтера”), своевременной замене свечей (оригинальных, что крайне важно) и масла, двигатели GDI не вызывают проблем даже при пробеге до 200 000 км и более.

Достоинства двигателей GDI

Итак, преимущества GDI-двигателя по отзывам:

  • Меньший средний расход топлива в сравнении с двигателями, оснащёнными распределённым впрыском;
  • Меньший уровень токсичных отходов горения;
  • Больший крутящий момент и мощность;
  • Увеличение срока службы отдельных деталей двигателя, так как в этих двигателях меньше нагара.

Решение покупать автомобиль с двигателем GDI или нет ‒ личное дело каждого. Но, приняв положительное решение, стоит тщательнейшим образом “обследовать” автомобиль. Если он не убит, то у вас ещё больше пищи для ума, потому как крайне приятно ехать “бодро”, но с меньшим расходом топлива, и наносить меньший вред окружающей среде и своему здоровью.

Статья о двигателях GDI - принцип работы, особенности, отличия от других типов моторов. В конце статьи - интересное видео о силовых агрегатах с прямым впрыском топлива.


Содержание статьи:

Gasoline Direct Injection (GDI) - система прямой подачи топливной смеси в ДВС. В GDI-моторах впрыск осуществляется не во впускной коллектор, как в обычных инжекторных двигателях, а непосредственно в цилиндр. По способу действия двигатели этого типа сочетают в себе принципы бензиновой и дизельной систем.

Общие сведения


Считается, что впервые эту разновидность двигателя использовала компания Mitsubishi, однако это не совсем верно. Первый двигатель такого типа был установлен на гоночный автомобиль Mercedes-Benz W196. Позже Mitsubishi использовали систему электронно-управляемого впрыска, что позволяло двигателю работать (при малых нагрузках) на топливовоздушной смеси с минимальным количеством горючего, то есть обедненной.

Первые автомобили Mitsubishi с моторами GDI начали производиться в 1996 году. С тех пор двигатель претерпел многие изменения и улучшения, так как первоначальный вариант был далек от совершенства.


Что касается аббревиатуры GDI, то она относится к машинам марки Mitsubishi, хотя многие автоконцерны используют ту же систему, но под другим названием. У Toyota это D4, у Mercedes - CGI, у Renault - IDE и т.д.

Особенность двигателя в том, что при малых нагрузках (равномерная езда со скоростью до 120 км/ч) он работает на обедненной топливовоздушной смеси. При повышении нагрузки происходит автоматический переход на классическую систему впрыска. Это делает автомобиль экономичным (до 20% экономии) и экологичным.

Принцип действия


Общий принцип работы ДВС заключается в подаче и смешивании топлива с воздушной массой, так как без последней возгорание невозможно. В бензиновых двигателях для оптимальной работы требуется 14,7 г воздушной смеси на 1 г бензина. Если воздуха оказывается больше нормы, такая топливовоздушная смесь носит название обедненной (бедной), если меньше - богатой.

Обедненная воздушная смесь снижает расход топлива, однако с ее возгоранием часто возникают проблемы. Чрезмерно насыщенная бензином смесь возгорается легко, однако излишки топлива не сгорают и выводятся вместе с переработанными газами, что приводит к бесполезной растрате. Не говоря уже о том, что на свечах и клапанах интенсивно образуется слой нагара.

Система GDI отличается от обычной тем, что впрыск горючего производится не во впускной коллектор, а напрямую в камеру сгорания, как у моторов, работающих на дизтопливе.

Принцип действия двигателя GDI:

  1. Бензин подается в камеру сгорания под высоким давлением и потоком закрученной формы, благодаря специальному строению форсунок.
  2. Поток на высокой скорости сталкивается с поршнем, после чего часть его как бы закрепляется на теле поршня, а другая часть продолжает движение, создавая трение и приобретая соответствующую форму.
  3. После этого поток загибается и уходит от поршня, увеличивая скорость. Некоторые частицы движутся медленно и расходятся в разные стороны, создавая разделение потока.
  4. В результате этого в камере сгорания образуется два участка с бензовоздушной смесью. В центре находится участок стехиометрической (обыкновенной) легковоспламеняемой топливной смеси. Вокруг него образовывается участок обедненной смеси.
  5. После этого происходит воспламенение (с помощью искры свеч зажигания) участка с высоким содержанием бензина. Затем процесс горения перекидывается на обедненные участки.

Основные отличия GDI от обычной системы впрыска

  1. Впрыск производится под давлением от 50 атмосфер (в обычном инжекторном двигателе всего лишь 3 атм). Это дает возможность осуществить мелкодисперсное направленное распыление.
  2. Дроссельная заслонка расположена несколько дальше, чем у обычных моторов.
  3. Горючее подается напрямую в цилиндр и там происходит образование топливовоздушной смеси. В обычных двигателях горючее подается во впускной коллектор, там же смешивается с воздушной массой.
  4. На поршнях имеется сферическое углубление. При помощи этого углубления осуществляется управление образованием вихря и возникшим пламенем. Также выемка дает возможность управлять образованием горючей смеси, регулируя количество воздушной массы и бензина в процессе соединения.
  5. Существует возможность образования максимально обедненной горючей смеси в цилиндрах. Оптимальное соотношение воздуха и бензина - 40:1 (в отличие от обычного впрыска с соотношением 14,7:1), однако количество воздуха может колебаться от 37 до 43 к 1.
  6. Форсунки, расположенные в ГБЦ, имеют конфигурацию, которая позволяет придать топливному потоку нужную, как бы закрученную, форму. Благодаря этому поток движется по четко заданной траектории.
  7. GDI-моторы работают в двух режимах: STICH (обыкновенный, как у других инжекторных системах) и Compression on Lean (работа на максимально обедненной смеси). Переключение между режимами происходит автоматически; при повышении нагрузки автомобиль переходит на работу при обогащенной топливной смеси. При снижении нагрузки переходит обратно в обедненный.
  8. Конструкция оснащена насосом высокого давления.

Особенности ТНВД


Топливный насос высокого давления (ТНВД) является ключевым элементом системы непосредственного впрыска. Именно от него зависит качество и работоспособность мотора в целом.

Существует четыре типа ТНВД:

1 поколение. Семиплунжерные топливные насосы

Первые и самые недолговечные. Устанавливались в автомобили марки Mitsubishi с 1996 до 1998 года. Не имеют системы отслеживания давления и чрезвычайно чувствительны к качеству бензина. Ремонту не подлежат и при износе (а это происходит очень быстро) необходима полная замена.

2 поколение. Трехсекционные топливные насосы

Являются модификацией семиплунжерных. Устанавливались с 1998 по 2000 год. Здесь производитель учел прошлые недоработки и уделил внимание их устранению. Имеют регулятор и датчик давления, в случае его резкого падения переводят работу автомобиля в аварийный режим. Это позволяет автомобилю продолжать движение достаточно времени, чтобы добраться до СТО.

Модель стала несколько «лояльнее» к качеству бензина и более долговечной.

3 поколение. Двухсекционный ТНВД

Имеется датчик давления, а регулятор не встроен в систему. Привод работает от распределительного вала.

4 поколение. «Таблетка»

Последняя и самая совершенная модель. Относительно долговечна, менее чувствительна к качеству топлива, отличается компактностью и надежностью. Основной недостаток - самооткручивающиеся крепежные гайки. Их состояние необходимо регулярно проверять, так как их ослабление приводит к нарушению работы системы и деформации пластин, выровнять которые довольно сложно.

Конструкция топливных насосов высокого давления зависит от конкретной модели.

Насколько важно качество топлива


Основная проблема двигателей GDI - чувствительность к малейшим отклонениям в качестве горючего. Первые ТНВД страдали этим недугом особо остро, что приводило к очень быстрому износу и необходимости производить замену. Последующие усовершенствования частично или полностью решили эту проблему и модели 2-4 поколения стали более надежными.

Кроме особенностей самой впрысковой системы, на долговечность двигателя влияет и тщательная система фильтрации. Она имеет 4 стадии:

  1. Очистка происходит с помощью фильтра-сеточки в насосе бензобака.
  2. Производится очистка обыкновенным фильтром. В зависимости от марки автомобиля, его месторасположения может меняться. Фильтр может устанавливаться в баке либо под днищем.
  3. Фильтрация происходит с помощью фильтра-стакана, расположенного в топливопроводе ТНВД.
  4. Последний этап очистки происходит в тот момент, когда горючее подается из «топливной рейки» в бак.
Такой основательный процесс фильтрации способен привести в порядок даже не слишком чистый бензин. Но одно дело - некачественное топливо по японским или европейским меркам, и совсем другое - для отечественного бензина. Даже четыре этапа очистки не смогут справиться с присадками и прочими атрибутами кустарного производства от которого так и не удалось избавиться полностью. Некоторый процент от общего количества топлива на территории России непригоден к использованию и по сей день. Проверки заправочных станций регулярно выявляют грубые нарушения. А для GDI это почти наверняка смерть.

Например, мембранный клапан и плунжеры изготовлены с высокой степенью точности, за счет чего и происходит нагнетание топливной смеси под требуемым давлением. Если же бензин окажется с частицами песка или другими примесями, особенно обладающими абразивными свойствами, система подачи подвергнется их воздействию и ее работа утратит точность. Что и приведет сначала к снижению эффективности работы двигателя, а затем и к поломке ТНВД.

В первую очередь, при возникновении проблемы снижается мощность двигателя. Через некоторое время он начинает и вовсе отказывать. Если обратиться в ремонтную мастерскую при первых признаках неисправности, топливный насос еще можно будет спасти. В противном случае его придется полностью заменить, так как сильно поврежденные детали восстанавливать бессмысленно.

Еще одна распространенная проблема GDI - плавающие обороты. Причиной может послужить как воздействие низкосортного горючего, так и естественный износ элементов ТНВД.


При падении давления система автоматически переводит работу в «классический» режим. После этого давление выравнивается и двигатель обратно переводится в режим работы на обедненной смеси, после чего давление снова падает, система опять переводит работу в «классический». И так до бесконечности.

В процессе этих переходов машина и начинает «плавать». При обнаружении подобного отклонения автомобиль следует отправить на диагностику, чтобы найти точную причину неполадки.

Заключение

Двигатели GDI отличаются мощностью и экономичностью, но достоинства почти всегда являются и причиной недостатков. В данном случае это чрезмерная чувствительность к малейшим отклонениям в системе впрыска и качеству топлива. Чтобы продлить срок службы автомобиля, следует регулярно производить замену свечей зажигания (на них быстро образуется нагар), чистить впускной коллектор и форсунки.

Не лишним будет регулярно осматривать инжектор и проверять качество распыления, устраняя малейшие неполадки на стадии их возникновения. И, конечно же, необходимо постоянно контролировать состояние фильтров и менять по мере необходимости.

Видео о современных двигателях с впрыском:

Топливный насос высокого давления (ТНВД) - один из важнейших узлов двигателя с непосредственным впрыском. Несмотря на то, что ТНВД достаточно неплохо защищен (фильтр в баке и на входе в ТНВД), он, тем не менее, наиболее подвержен износу в суровых российских условиях эксплуатации.
До настоящего времени производились три поколения ТНВД:
Первое поколение, односекционный семиплунжерный насос. Это наиболее сложный по конструкции насос, где давление топлива создается при помощи "барабана" с 7 плунжерами. Точность обработки деталей в этом насосе такова, что износ даже в одну сотую миллиметра приводит к серьезному ухудшению его работы. Ресурс у такого насоса невелик, и как правило не превышает 100 тыс. км.

Отремонтировать его практически невозможно, поэтому как правило его меняют в сборе на насос второго поколения. ТНВД 1-го поколения ставились на машины относительно недолго - с 1996 по середину 1997 года.
Второе поколение, трехсекционный одноплунжерный насос. Это, пожалуй, самая удачная в плане ремонтопригодности модификация ТНВД: три отдельных блока ("секции") - привод, насос и регулятор давления, каждый из которых можно, в случае необходимости заменить, не трогая остальные. Давление топлива создается при помощи специальных пластин, от состояния которых и зависит напрямую производительность насоса.

Третье поколение, так называемая "таблетка". Существует две модификации ТНВД этого типа - с регулятором давления, расположенным внутри ТНВД, или вынесенным в магистраль "обратки". Блок высокого давления практически идентичен ТНВД 2 поколения.
Основные неисправности ТНВД 2 и 3 поколения, возникают по причине несвоевременного планового ТО по замене топливных фильтров тонкой и грубой очистки. При нормальной эксплуатации средний ресурс такого типа ТНВД, составляет около 200000км, без его ремонта. При этом, как правило, плунжерная пара в насосе находится в хорошем состоянии, изнашиваются в основном пластинчатые клапана.
Симптомы неисправности ТНВД: неустойчивая работа двигателя, плохая тяга; двигатель неохотно набирает высокие обороты (выше 2000 об/мин); при нажатии на педаль газа во время движения автомобиль резко замедляется и может даже заглохнуть. При этом, как правило, на панели приборов горит лампочка Check Engine и диагностический сканер выдает ошибку Fuel Pressure Fail (код P0190). При всех этих признаках имеет смысл проверить давление топлива. Если нет диагностического сканера, давление можно проверить при помощи обычного цифрового мультиметра. Сигнал можно снять вольтметром со среднего контакта датчика давления топлива, расположенного в зависимости от конструкции на ТНВД или топливной рампе. При этом измерение надо проводить на прогретом двигателе и включенном D или R. Номинал по давлению составляет для 4G15 - 2.9 вольта (4.7мПа), 4G93 - 3.0 вольта (4.8 мПа), 4G64 - 3.4 вольта (5.6мПа), 4G74 - 4.0 вольта (6.8мПа), при падении давления менее 2.6 вольта ЭБУ дает команду на повышение оборотов, для стабилизации давления. Даже при полной потери высокого давления и неисправности ТНВД (работа только при давлении создаваемого погружным насосом в баке), ЭБУ переключается на аварийную программу, и увеличивает время открывания форсунки, на промежуток до 3.2 м.сек.(режим MPI), вместо 0.51 м.сек.(режим GDI) на холостом ходу, и не позволяет развивать мотору обороты свыше 2000 об/мин, что позволяет продолжить работу двигателя.

Mitsubishi можно назвать первопроходцем на пути массового внедрения системы непосредственного впрыска топлива. В отличие от Mersedes, которые задолго до Mitsubishi делали попытки внедрения прямого впрыска на авто, просто применяя наработки из опыта в авиастроении, инженеры Mitsubishi создавали систему, которая была бы удобной и пригодной для повседневной эксплуатации автомобиля. Рассмотрим GDI двигатель, устройство и принцип работы системы питания.

Базовые понятия

В статье о мы уяснили, что существует несколько видов систем впрыска топлива:

  • одноточечный впрыск (моноинжектор);
  • распределенный впрыск на клапаны (полный инжектор);
  • распределенной впрыск в цилиндры (прямой впрыск).

Gasoline Direct Injection, что в переводе означает – прямой впрыск бензина, сразу говорит нам о том, что в двигателях GDI происходит внутреннее смесеобразование. Иными словами, топливо впрыскивается непосредственно в цилиндры. Но какие именно преимущества дает прямой впрыск:

Проблема низкого КПД бензинового двигателя, по сравнению с дизелем, в небольших рамках регулировки состава ТПВС. Теоретическим и экспериментальным путем было установлено, что для полного сгорания 1 кг бензина необходимо 14,7 кг воздуха. Такое соотношение называется стехиометрическим. Двигатель может работать на обедненной смеси – около 16,5 кг воздуха/ 1 кг бензина, но уже при 19/1 ТПВС от свечи зажигания не воспламенится. Но даже смесь 16,5/1 считается слишком бедной для нормальной работы, так как ТПВС горит медленно, что чревато потерей мощности, перегревом поршневых колец и стенок камеры сгорания, а поэтому рабочая бедная гомогенная смесь лежит в пределах 15-16/1. Приготавливая в цилиндрах богатую смесь с соотношением 12,1-12,3/1 и сдвигая УОЗ, мы получаем прибавку в мощности, при этом значительно ухудшаются экологические показатели мотора.

Экономичность GDI

Проблема обычных двигателей с распределенным впрыском на клапаны в том, что топливо подается исключительно на такте впуска. Перемешивание топлива с воздухом начинает происходить еще во впускном коллекторе, в итоге при перемещении поршня к ВМТ смесь становится близкой к однородной, то есть гомогенной. Преимущество GDI в том, что двигатель может работать на сверхбедной смеси, когда соотношение топлива к воздуху может достигать 37-41/1. Способствует этому несколько факторов:

  • специальная конструкция впускного коллектора;
  • форсунки, которые позволяют не только точно дозировать количество подаваемого топлива, но и регулировать форму факела;
  • особая форма поршней.

Но в чем именно особенность принципа работы, позволяющая быть моторам GDI настолько экономичными? Поток воздух, благодаря особой форме впускного коллектора, состоящего из двух каналов, еще на такте впуска имеет определенное направление, а не попадает в цилиндры хаотически, как в случае с обычными двигателями. Попадая в цилиндры и ударяясь об поршень, он продолжает закручиваться, способствуя тем самым турбулизации. Топливо, которое подается в непосредственной близости поршня к ВМТ небольшим факелом, ударяется о поршень и, подхватываемое закручивающимся потоком воздуха, перемещается таким образом, что в момент подачи искры находится в непосредственной близости к электродам свечи зажигания. В итоге происходит нормальное воспламенение ТПВС вблизи свечи, в то время как в окружающей полости находится смесь чистого воздуха и отработавших газов, подающихся во впуск системой EGR. Как вы понимаете, в обычном двигателе реализовать такой способ газообмена не представляется возможным.

Режимы работы двигателя

Моторы GDI могут эффективно работать в нескольких режимах:

  • Ultra- Lean Combustion Mode – режим сверхбедной смеси, принцип протекания которого был рассмотрен выше. Используется, когда на двигатель нет большой нагрузки. К примеру, при плавных разгонах либо постоянном поддержании не слишком высокой скорости;
  • Superior Output Mode – режим, в котором топливо подается на такте впуска, что позволяет получить гомогенную стехиометрическую смесь с соотношением близким к 14,7/1. Используется, когда двигатель работает под нагрузкой.
  • Two- stage Mixing – режим обогащенной смеси, при котором соотношение воздуха к топливу близко к 12/1. Используется при резких ускорениях, большой нагрузке на двигатель. Такой режим еще называют режимом открытой петли (Open loop), когда не опрашивается лямбда-зонд. В таком режиме топливная коррекция для урегулирования выбросов вредных веществ не проводится, так как главная цель – получить максимальную отдачу от двигателя.

За переключение режимов отвечает электронный блок управления двигателем (ЭБУ), который делает выбор, ориентируясь на показания датчиковой аппаратуры (ДПДЗ, ДПКВ, ДТОЖ, лямбда-зонда и т.д.)

Two-stage Mixing

Режим двухэтапного впрыска также является особенностью, позволяющей моторам GDI быть крайне приемистыми. Как уже говорилось выше, состав смеси в таком режиме достигает 12/1. Для обычного двигателя с распределительным впрыском такое соотношение топлива к воздуху является слишком богатым, а поэтому эффективно воспламеняться и гореть такая ТПВС не будет, значительно ухудшаться выбросы вредных веществ в атмосферу.

Режим открытой петли предполагает 2 этапа впрыскивания топлива:

  • небольшая порция на такте впуска. Главное предназначение – охлаждение оставшихся в цилиндре газов и самих стенок камеры сгорания (состав смеси при этом близок к 60/1) Впоследствии это позволяет поступить в цилиндры большему количеству воздуха и создать благоприятные условия для поджигания основной порции бензина;
  • главная порция в конце такта сжатия. Благодаря благоприятным условиям, созданным предварительным впрыском, и турбулентности в камере сгорания, полученная смесь сгорает крайне эффективно.

Есть большое желание поговорить о том, как именно инженеры Mitsubishi «приручили» турбулентность, о ламинарном и турбулентном движении и числе Re, введенным О.Рейнольдсом. Все это помогло бы лучше понять, как именно в моторах GDI создается послойное смесеобразование, но для этого, к сожалению, нам не хватит и двух статей.

ТНВД

Как и в дизельном двигателе, для создания достаточного давления в топливной рампе используется топливный насос высокого давления. За годы производства моторы комплектовались ТНВД нескольких поколений:


Форсунки

Для обеспечения высокоточной регулировки состава ТПВС форсунки должны обладать крайне высокой точностью. Сам принцип открытия плунжера для подачи топлива схож с обычной электромагнитной форсункой. Особенности форсунок системы GDI:

  • возможность формирования разных видов распыла бензина;
  • максимальное сохранение точности дозирования вне зависимости от температуры и давления в камере сгорания.

Особенно примечательно устройство завихрения, располагающееся в корпусе форсунки. Именно благодаря ему топливо, вылетая из форсунки, лучше подхватывается закручивающимся потоком воздуха, что способствует лучшему перемешиванию ТПВС и перенаправлению смеси к свече зажигания.

Эксплуатация

Главные неприятности, связанные с эксплуатацией двигателей с прямым впрыском от Mitsubishi на отечественных просторах:

  • износ ТНДВ. Насос является узлом с претенциозными требованиями к подгонке деталей, и главная проблема не в уровне изготовления, а в качестве отечественного топлива. Разумеется, и сейчас можно нарваться на плохое топливо. Но времена, когда качество бензина было настоящей головной болью и риском финансовых потерь для владельцев авто с двигателями GDI, к счастью, уже прошли;

засорение воздушных каналов впускного коллектора. Образование наростов вносит корректив в движение воздушных масс и процесс перемешивания топлива с воздухом. Именно это называют одной из причин образования черного нагара на свечах зажигания, так хорошо известного владельцам авто с двигателями GDI.

GDI

КОНСТРУКЦИЯ НАСОСА

ДИЗЕЛЬНОМУ ТНВД «НЕ ПОВЕЗЛО»

БАЛАНСИРОВКА ТНВД

ИЗНОС БАРАБАНА ТНВД

НЕУСТОЙЧИВЫЙ РЕЖИМ РАБОТЫ ХХ

ИЗНОШЕННОСТЬ НАСОСА

"Песок" в бензине.

МАЛОЕ ДАВЛЕНИЕ В СИСТЕМЕ

ДАТЧИК ДАВЛЕНИЯ (ошибка №56)

Датчик давления

Датчик давления топлива

КЛАПАН ДАВЛЕНИЯ

РЕГУЛЯТОР ДАВЛЕНИЯ

ПРОВЕРКА ДАВЛЕНИЯ

Частный способ восстановления давления

ПРОВЕРКА РАЗМЕРОВ

РЕДУКЦИОННЫЙ КЛАПАН

РЕДУКЦИОННЫЙ КЛАПАН шестигранник)

ПРАВИЛЬНАЯ СБОРКА НАСОСА

ТОЛКАТЕЛЬ-НАГНЕТАТЕЛЬ

ФИЛЬТРИК В НАСОСЕ

ОСЦИЛОГРАММА РАБОТЫ

Частный случай ремонта насоса

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ (ТНВД) ДВИГАТЕЛЕЙ GDI

На настоящий момент известно четыре типа (варианта) топливных насосов высокого давления систем GDI:

1 поколение

односекционный

семиплунжерный

2 поколение

трехсекционный

одноплунжерный

3 поколение (таблетка)

4 поколение

Давайте начнем рассматривать устройство этой системы. Только без общих фраз и понятий, а – конкретно.

Наше знакомство начнем с так называемого "односекционного" топливного насоса высокого давления, установленного на двигателе 4G93 GDI, рабочее давление в котором создается при помощи семи плунжеров:

"Трехсекционный" ТНВД и его устройство, работу, диагностику и ремонт мы будем рассматривать в последующих статьях. Именно такой ТНВД и устанавливается в последнее время (после 1998 года) практически на всех автомобилях с системой GDI вследствие того, что он более надежен, более долговечен и, в принципе, лучше поддается диагностике и ремонту.

Если сказать коротко, то принцип работы данной системы GDI достаточно простой: «обыкновенный» топливный насос «забирает» топливо из топливного бака и по топливной магистрали подает его во второй насос – насос высокого давления, где топливо сжимается далее, и уже под давлением около 40-60 кг/см2 поступает к форсункам, которые «впрыскивают» топливо непосредственно в камеру сгорания.

Самое «слабое звено» в данной системе – именно этот топливный насос высокого давления (фото1),располагающийся слева по ходу движения (фото2) :

фото 1 фото 2

Разбирать такой насос достаточно несложно:

Это "обыкновенный" семиплунжерный насос:

внутри которого находится так называемый " плавающий барабан":

Ниже можно посмотреть общий вид разобранного для ремонта насоса:

Слева-направо:

1. шайба перепуска давления

2. пружинное кольцо

3. плавающий барабан

4. опорное кольцо плунжеров

5. плунжера с обоймой

6. упорная шайба плунжеров

Немного выше мы говорили о том,что ТНВД GDI - "слабое звено".

По каким причинам - догадаться несложно, потому что не только владельцы GDI, но и "обыкновенные" автолюбители начали понимать, что если в автомобиле (в двигателе)начались какие-то непонятные перебои в работе, то первым делом, на что требуется обратить внимание - свечи зажигания.

Если они "красные" - кого винить? Некого...

Только менять, потому никакому "ремонту", как иногда прописывается на просторах Интернета такие свечи зажигания не подлежат.

ТОПЛИВО

Да, именно оно и является основной причиной "болезни" систем непосредственного впрыска топлива. Как и GDI, так и D-4.

В следующих статьях мы расскажем и покажем на конкретных примерах и фотографиях - КАК конкретно и на ЧТО конкретно влияет наш "качественный и отечественный" бензин, например, на:

фото 7 фото 8

КОНСТРУКЦИЯ НАСОСА

Это только "черт страшен, когда его размалюют", а устройство ТНВД GDI достаточно простое.

Если разобраться и иметь некоторое желание, например...

Посмотрим на фото и увидим в разобранном состоянии односекционный семиплунжерный насос высокого давления GDI :

Слева - направо:

1-магнитный привод:приводной вал и шлицевый вал с магнитной проставкой между ними

2-опорная пластина плунжеров

3-обойма с плунжерами

4-седло обоймы плунжеров

5-редукционный клапан камеры высокого давления

6-клапан регулируемого высокого давления на выходе с форсунок-регулятор давления топлива

7-пружинный демпфер

8-барабан с нагнетательными камерами плунжеров

9-шайба-разделитель камер низкого и высокого давления с холодильниками для смазки бензином

10-корпус ТНВД с электромагнитным клапаном сброса и с портом для манометра

Порядок сборки и разборки ТНВД показан на фото цифрами. Исключаем только позиции 5 и 6, потому что данные клапана можно устанавливать при сборке сразу же, до установки барабана с плунжерами (о данных клапанах и их некоторых особенностях будет рассказано в другой статье, посвященной именно им).

После сборки насоса следует закрепить его и начать проворачивать вал,что бы убедиться в том, что все собрано правильно и вращается, не "клинит".

Это так называемая простая "механическая" проверка.

Что бы провести "гидравлическую" проверку, следует проверить работоспособность ТНВД "на давление"...(о чем будет рассказано в дополнительной статье).

Да, устройство ТНВД "достаточно простое", однако...

Много жалоб у владельцев GDI,много!

И причина, как уже много раз говорилось "на просторах Инета" только одна - наше родное российское топливо...

От которого не только свечи зажигания "краснеют" и с понижением температуры автомобиль заводится отвратительно (если вообще заводится),но и "ласточка" с GDI все чахнет и чахнет с каждым литром залитого в нее русского топлива...

Посмотрим на фото и "покажем пальцем" на все то, что изнашивается в первую очередь и на что надо обратить внимание в первую очередь:

Обойма с плунжерами и барабан с нагнетательными камерами

фото 1 (в сборе)

если вы посмотрите внимательно (приглядитесь),то сразу же заметите некоторые "непонятные потертости" на корпусе барабана. А что же тогда творится внутри?

фото 2 (раздельно)

фото 3 (барабан с нагнетательными камерами)

а вот здесь уже хорошо видно - ЧТО представляет из себя наш российский бензин...такая же красноватость, просто-таки ржавчина на плоскости барабана. Естественно, она (ржа),не только здесь остается, а попадает еще и на сам плунжер и на все то, "обо что он трется", -смотрим фото далее...

Плунжер

фото 4

и на этом снимке хорошо заметно, какие "маленькие неприятности" может принести нам наш - родной - бензин.

Стрелками показаны "некоторые потертости", из-за которых плунжер (плунжера) перестают нагнетать давление и двигатель начинает "работать как-то не так...", как говорят владельцы GDI.

Для восстановления ТНВД GDI хорошо бы иметь и "некоторые" запасные части:

фото 5

О других "слабых" местах топливного насоса высокого давления GDI будет рассказано в других статьях.

А так же и о многом другом.

ДИЗЕЛЬНОМУ ТНВД «НЕ ПОВЕЗЛО»

Дизельному топливному насосу высокого давления "не повезло"...

Потому что у него всего один плунжер, и когда он выходит из строя ("садится", есть такое понятие), то тут и начинаются проблемы разного характера.

Топливный насос высокого давления GDI, который имеет такое название как "семиплунжерный", лишен, надо полагать, таких проблем?

Это как посмотреть и с какой стороны.

Автомобиль Mitsubishi с двигателем GDI 4G93 на диагностику не приехал, он "пришел". Еле-еле, медленно-медленно, потому что двигатель работал кое-как.

Но самое интересное, так это предистория ремонтного маршрута - откуда вернулась эта машина.

Как ни странно, но перед этим данный автомобиль диагностировался в дилерской фирме данной марки автомашин.

И что там?

Как ни странно, но по словам Клиента: "там ничего не смогли сделать".

Как ни странно, но там не смогли сделать самого простого и банального - проверить "высокое" давление.

Ладно, оставим данные рассуждение "за бортом" нашего рассказа, хотя они наводят на довольно печальные мысли, высказанные "московским провинциалом" в недавней статье на "просторах" этого интернет сайта, мысли, которые подтверждают и убеждают: "Эх, были люди в наше время!..".

Ну да ладно, что же приключилось с этим автомобилем и почему он не приехал, а "пришел пешком" в, как сказал Клиент, "мастерскую моей последней надежды".

"Неустойчивость холостого хода ".

Со всеми вытекающими из этого последствиями.

Когда проверили "высокое" давление, то оказалось, что оно минимально допустимое для "более-менее" устойчивой работы двигателя, всего 2.5 - 3.0 Mpa.

Естественно, о какой нормальной и правильной работе можно вести речь в данном случае?

Приостановимся.

А теперь посмотрите на фото 1: мы специально остановили рабочий процесс проверки давления именно в этом месте, когда манометр подсоединен не полностью и держится только на одном креплении.

Так - делать - нельзя!

И вы, конечно, понимаете почему: давление топлива (бензина) при работе двигателя составляет десятки килограмм на сантиметр и, если не дай Бог, штуцер не выдержит и сорвется, то...

Как обычно, как и положено в этой мастерской : сняли и разобрали топливный насос высокого давления. Посмотрели и "присмотрелись" при помощи инструментальной проверки на состояние плунжеров и обнаружили, что они, практически, "мертвые".

Как и плунжера, так и "барабан".

Но самое интересное еще впереди...

Дело в том, что в последнее время слишком много было ремонтов именно этих ТНВД с заменой отдельных частей и так уж получилось, что для этого ТНВД найти нормальные, подходящие по техническим условиям плунжера оказалось практически невозможно...

Ничего страшного, потому что из любого безвыходного положения - выход есть.

Только для этого надо иметь "немного" поболее серого вещества и, самое главное - опыта, который приходит с годами.

Выход был найден следующий:

Подобрать "правильный барабан",- первое.

Второе: подобрать несколько плунжеров, которые бы "не пропускали" и несколько - которые бы "давили".

Исходя их этого и было найдено " GDI-соломоново решение" –

4 плунжера с размерами 5.956

2 плунжера с размерами 5.975

1 плунжер с размером 5.990

фото 2 фото 3

Кроме того, посмотрите внимательно на фото 2 и 3.

Если на фото 2 можно заметить отличия плунжеров, то на фото 3 - что?

"Барабан как барабан", как говорится.

Приостановимся и разберемся. И немного приподнимем завесу "тайны" механизма выбора и подбора плунжеров и барабана, потому что главный вопрос здесь: как выбирать, по каким параметрам, на что смотреть, как смотреть.

Фото 2. Видно, что по внешнему виду данные плунжера имеют отличия. Но не только по внешнему виду, а еще и по своему химическому составу, из-за которого тот, который под номером 2 -малоизнашиваемый.

Фото 3. Как говорится: "Барабан - как барабан"? Цвет. Он ближе к коричневому. А это говорит тоже о том, что такой "барабан" тоже малоизнашиваемый.

Вывод: подбирать и ставить надо именно из таких. Что и было сделано.

Итог проделанной работы можно увидеть здесь:

Так что дизельному насосу действительно "не повезло" : он "умирает" сразу, если плунжер его вышел из строя. а вот "семиплунжерный" GDI насос высокого давления еще может "побороться"!

СИСТЕМА АВАРИЙНОГО СБРОСА ДАВЛЕНИЯ ТОПЛИВА

Да, поговорим снова о давлении в системе непосредственного впрыска топлива, о его поддержании и аварийном сбросе в случае непредвиденных ситуаций...

фото фото 2

На приведенных выше фото вы видите клапан аварийного сброса давления, который на ТНВД четвертого поколения устанавливать перестали.

Из фото 3 становится ясным, что устройство данного клапана достаточно простейшее, всего из двух частей: тарированной пружины и штока специальный конфигурации (фото 3).

Шток вставляется в отверстие наборного пластинчатого клапана (фото 1), а другой стороной в толкатель-нагнетатель, где упирается в поршень (фото 2).

Принцип действия такой же простой: как только давление внутри ТНВД в каналах высокого давления превысит показание в 90 кг.см2, то клапан под воздействием этого повышенного давления приподнимается (тарированная пружина, вспомним) и далее одновременно происходит два действия:

1. избыточное давление "плавно" перетечет в камеру низкого давления

2. пружина клапана сожмется и под ее воздействием произойдет "пережимание" другой пружины, которая расположена в толкателе-нагнетателе и тем самым на время снижения давления поршень толкателя-нагнетателя снизит свою производительность

Как только давление снизится до значения 50 кг.см2, то клапан закрывается и все начинает работать в обычном режиме.

На новых моделях GDI этот клапан уже не устанавливается. Трудно сказать по каким причинам, но скорее всего из-за того, что первоначально этот клапан установила "перестраховочная японская душа", потому что такое явление, как повышение давления до 90 килограмм практически никогда не встречается.

Другой клапан "работает по низкому давлению"

фото 4 фото 5 фото 6

фото 7 фото 8

Устанавливается он на "выходе" низкого давления в "обратку" (фото 7).

Внешний вид клапана и его размеры приведены на фото 4-5-6, а на фото 8 показан уже разобранный клапан (в принципе, он неразборный, но если постараться...).

Предназначен данный клапан для одного: "не сбрасывать топливо в обратку ниже установленного значения".

Руководство говорит, что это "установленное значение" равняется 1 Mpa, но Практика опровергает это застылое мнение (ошибочный перевод? нежелание разбираться по причине того, что уже ИМЯ работает на отремонтированные автомобили?) и утверждает, что данный клапан срабатывает при значении 0.1 Mpa.

Все упомянутые клапана не требуют какой-то особой чистки и регулировки, потому что все это(тарирование) сделано навсегда еще при сборке.

Конечно, "особо горящая техническая душа" при наличии Желания и Времени всегда может попытаться что-то изменить и потом посмотреть - что получится.

Один совет: перед началом такой работы хорошенько изучите закон Паскаля...

БАЛАНСИРОВКА ТНВД

Такое выражение, как "балансировка ТНВД" еще не упоминалось в наших статьях, но сейчас пришло время рассказать и об этом -что это такое, для чего и как делается Специалистом до диагностике и ремонту систем непосредственного впрыска топлива Дмитрием Юрьевичем в автосервисе АНКАР.

Когда Клиентом высказываются такие описания неисправности, как: "Плохо тянет, нет мощности" и тому подобное, то первым делом внимание обращается на систему зажигания и топливный насос высокого давления:

фото 1 фото 2

фото 3 фото 4

Работать по диагностике систем непосредственного впрыска топлива "простым" оборудованием смысла особенного не имеет, потому что "фирменные" приспособления не только облегчают проведение диагностики, но и позволяют делать ее более качественно и быстро.

Приведенные выше фотографии как раз и говорят об этом, ну скажите, как еще можно точнее понять происходящие процессы в системе зажигания, как не при помощи показанного на фото 2 приспособления?

Или, на фото 4 показан дисплей дилерского сканера MUT2, который позволяет "собрать в кучу" нужные параметры и одновременно их отсматривать , что бы принять наиболее верное решение для определения имеющейся неисправности?

Выражение "нет давления " - является самым настоящим "приговором" ТНВД, но для того, что бы полностью в этом убедиться, надо провести дополнительные проверки, что бы потом "приговор" обжалованию не подлежал".

Самая точная проверка - "инструментальная", когда ТНВД, на основании показаний сканера и дополнительных проверок разбирается, осматривается и измеряется.

Поводом для "приговора" описываемого ТНВД явилось вот что:

фото 5 фото 6

Фото 5 и 6 - шайбы обоймы плунжеров.

На фото 5 и 6 стрелками показаны поверхности, которые подвержены износу. Для более лучшего их рассмотрения нажмите на следующее фото:

Хорошо заметно, что на шайбе под номером 1 выработка очень заметна. На шайбе под номером 2 выработка, можно сказать, "стандартная".

Итак, о чем все это может говорить?

На основании своего опыта Дмитрий Юрьевич может предполагать, что такие вот изношенные поверхности получаются вследствие разбалансировки барабана обоймы плунжеров.

Хотя, если на него посмотреть "просто так", то что можно увидеть?

Практически ничего. А вот что бы действительно "увидеть", надо иметь многолетний опыт, потому что только после него и приходит второе и законченное определение: "Увидеть и Понять".

Если вы хоть немного сталкивались с разборкой-сборкой двигателей, то должны знать, что там тоже есть такое понятие, как "балансировка", там поршня подбирают по весу.

Так и здесь (в принципе и с некоторой "натяжкой"), но только подбор идет не поршней, а - плунжеров (фото 8).

Их подбор происходит по такому принципу, который можно назвать "равновесным" (фото 8):

Например, плунжера под номерами 1-2 должны соответствовать плунжерам под номерами 4-5. И так далее.

Нельзя ставить рядом плунжера, например, с одинаковыми размерами 5.970.

Вывод таков: износ плунжеров происходит так же и по такой причине, как "разбалансировка барабана".

Вот почему, прежде чем "приговорить" ТНВД, надо провести множество проверок и измерений, которые трудно провести правильно без необходимого оборудования.

ИЗНОС БАРАБАНА ТНВД

Многие неисправности двигателей GDI возникают, как уже говорилось, из-за недоброкачественного топлива: откровенно «грязного», или с «супер» присадками, или просто «несоответствующего». Или так называемого «человеческого фактора».

На нижеприведенных фото показана именно такая неисправность, которая как раз и возникла по этим двум причинам: «фактора» и топлива.

На фото 1 показано два «барабана» и, если присмотреться, то можно увидеть, что тот, который слева – тот вроде как «глаже» и «приятнее на вид» чем тот, который справа.

Проследив за стрелками на фото 1 мы увидим, что плоскость левого «барабана» отличается, и довольно сильно от плоскости правого «барабана».

На фото 2 приведены те же самые «ответные» части непосредственно прилегающие к «барабану». Стрелками на фото 2 (левая позиция) показаны «потертости» и царапины возникшие по уже упоминавшимся «факторам».

Такой топливный насос уже практически работать не будет. Потому что давления – не будет или оно будет «на грани фола», как говорится. «Металл не говорит», он только может нам «подсказывать» что и как было. Попробуем рассмотреть «историю болезни» такой неисправности?

На фото 3 практически в натуральную величину показан «стертый барабан»(постоянно сравнивайте его с таким же, но «гладким и справным» на фото 1 (слева).

Итак, всматриваемся:

Позиция «a» - такой должна быть вся поверхность

Позиция «b» - первая «ступенька выработки»

Позиция «c» - вторая «ступенька выработки»

Стрелки под №1 показывают «ширину выработки» «с» - самой большой и глубокой.

Как мы знаем, в топливном насосе высокого давления все его части, которые соприкасаются с бензином – им же и «смазываются». И охлаждаются.

фото 3 фото 4

Качество и еще раз качество. Только это «спасет» обработанные с высочайшей точностью плоскости (поверхности) от повреждений и как следствие – «сохранит» требуемое давление на «выходе» ТНВД.

«Песчинка», одна и совсем маленькая, которая может оказаться в топливном баке и которая по своим маленьким размерам сможет «пролезть» через сеточки и очищающие элементы фильтрации топлива и попасть в «святая святых» топливного насоса (фото 4, позиция 1, оставшиеся «следы» от «песчинки»), сначала начала «вырабатывать» позицию «b» (фото 3).

Когда водитель «утопил газ в пол», то «песчинка» переместилась ближе к центру и начала активно «вырабатывать» окружность «с» (фото 3), в результате чего и получилась такая Глубокая выработка (стрелки 1, фото 3).

Немного непонятно, при чем здесь выражение и последствия этого, как «газ в полик»?

При том, что здесь происходит:

1. увеличение оборотов (естественно) и скорости вращения «барабана».

2. увеличивается «скорость трения», для чего требуется увеличенное охлаждение топливом, которого может не хватать по причинам низкой производительности подкачивающего топливного насоса в топливном баке, «забитости» топливного фильтра перед ТНВД, «забитости» топливного «фильтрика» в самом ТНВД, что и приведет к уменьшению необходимого количества топлива не только для «производства» давления, но и для охлаждения и "смазки" трущихся частей топливного насоса высокого давления.

Вот и начинается «активная выработка» плоскостей.

Конечно, все это немного приблизительно и относительно, потому что никто еще «не заглянул» вовнутрь топливного насоса во время его износа и мы можем только предполагать…

НЕУСТОЙЧИВЫЙ РЕЖИМ РАБОТЫ ХХ

Довольно часто двигатель начинает работать неустойчиво на холостом ходу и, в принципе, только при помощи сканера, который "понимает" GDI можно определить "область" неисправности: "пониженное давление".

Не зная особенностей данной системы впрыска топлива или не имея достаточной практики, можно довольно долго искать неисправность, перебирая или пытаясь исправить именно то, что кажется наиболее вероятным по данной неисправности.

Постараемся помочь в этом вопросе и расскажем о наиболее распространенной неисправности, из-за которой и возникает "неустойчивый ХХ". Посмотрим на фото:

фото 1 фото 2

фото 3 фото 4

На фото 1 вы видите "посадочное место", а на фото 2-3-4 и сам "пластинчатый наборный клапан", который и является "первой ступенью" накачки топлива для создания высокого давления.

Пластины расположены именно так, как и предстоит их собирать.

На первый взгляд даже эти, представленные на фото пластины в полном порядке.

Однако если присмотреться (хорошо, конечно, иметь на своем рабочем столе и обыкновенное увеличительное стекло), то можно "что-то" заметить:

фото 6 фото 7

Это "что-то" особенно хорошо заметно на фото 5.

Здесь представлены две одинаковые пластины. Но если присмотреться, то можно визуально определить, что на левой пластине (цифра 1) светлый ободок вокруг отверстия намного меньше, чем на правой пластине (цифра 2).

Удалось установить, что "внешний вид" такой выработки будет приблизительно таким:

Как мы видим, "полочка" выработки "а" намного меньше, чем "полочка" выработки "b".

Именно таким образом и происходит износ вокруг этих перепускных отверстий. Как и по причине вполне естественного износа, так и по причине некачественного (грязного) топлива.

И тогда средняя пластина наборного пластинчатого клапана станет прилегать к отверстию "некорректно", приблизительно так, как мы пытались смоделировать на фото 6.

И на основании закона Паскаля, а так же учитывая, что жидкость(бензин) подвергается нагреву, вибрации, что она может быть и не вполне однородной и так далее, то получается, что такая вот выработка на разных отверстиях может быть и не "отцентрирована", а смещена и влево, и вправо.

А теперь можно записать или запомнить:

Если "не держит" одно отверстие...нет, здесь надо обязательно остановиться и оговориться, потому что в последнее время появилось очень уж много "критиканствующих элементов", которые могут вполне придраться к этому выражению: "...не держит...отверстие...",- и разведется "бодяга" по "точным" выражениям" , по "неправильным" выражениям, опять будет засоряться Интернет высказываниями о "коренном несогласии с автором"...и так далее, и тому подобное...хотя, если не пытаться вырывать выражение из всего контекста, то все вполне понятно, не правда ли?

Итак, "если не держит одно отверстие " (фото 7), то двигатель на ХХ работать будет, но обороты его будут - "гулять".

Если "не держит" уже два отверстия , то обороты ХХ будут "гулять" всегда.

Если "не держит" три отверстия , то ХХ просто-напросто - не будет.

Ну, о четвертом уже и говорить не приходится. До этого дело, скорее всего, не дойдет.

Особенно осторожно надо относиться к попытке восстановления средней пружинчатой пластины.

Вы сами понимаете, что стоит только "неловко" ее перегнуть, подогнуть и...давления, естественно, уже не будет.

Все пластины восстанавливать можно. Только не стоит их "тереть до упора", вполне будет достаточным "убрать" при помощи притирочной пасты для клапанов черные или ржавые налеты и восстановить, впоследствии, при помощи "шкурки-2000" ровную "посадочную" плоскость для пружинчатых лепестков средней пластины.

ИЗНОШЕННОСТЬ НАСОСА

Как говорили наши бабушки, помните?

"Не надо экономить на своем здоровье...",- и если немного переделать это выражение по отношению к автомобилю, то можно сказать таким образом:

" Не надо экономить на топливе".

В среде автомобилистов бытует весьма и весьма распространенное мнение, что "девяносто второй намного лучше девяносто пятого". И приводятся многочисленные примеры того, что, мол, на девяносто втором и заводится лучше, и расход меньше, и так далее, и так далее...

Этот вопрос весьма и весьма спорный. Глаголить можно и много и долго.

Но мы просто приведем пример того, как "GDI относится к девяносто второму ".

Клиент на Мицубиси "Легнуме" выпуска 1996 года с двигателем 4G93 (праворульный) приехал с такими жалобами на свой автомобиль: " Что-то плохо стал разгоняться...неуверенно работает на холостом ходу...".

Автомобиль был приобретен всего пол-года назад и первое время к нему не было никаких претензий. А потом все и началось... но как-то незаметно, "плавно", если так можно сказать.

Первым делом было проверено давление топливного насоса высокого давления.

Оказалось, что на ХХ он "давит" всего около 2.0 Mpa (около 20 кг\см2).

Снятая Data Stream подтвердила первоначальную механическую проверку: "маленькое давление развиваемое насосом".

На оборотах - да, ТНВД "давил" около 5.0Mpa, а вот на ХХ, увы.

Что оказалось при разборке топливного насоса и какие были обнаружены причины неисправности:

фото 1 фото 2

На фото 1 и фото 2 показан регулируемый клапан ограничения давления. На фото 2 стрелкой указано на место максимального износа прецизионной детали.

фото 3 фото 4

На фото 3 и фото 4 приведен "барабан" и шайба - "формирователь-распределить давления".

На фото 3 стрелкой 1 показано место соприкосновения, в котором и происходит износ деталей.

Изнашивается только одна сторона (фото 4, позиция 2) - на "барабане".

На данном "барабане" изменение размеров составило около 0.7 мм.

фото 5 фото 6

На фото 5 показано место расположения "фильтрика", а на фото 6 - сам "фильтрик", только стоит он "наоборот", при установке он переворачивается.

Так вот, "фильтрик" был сильно засорен...

фото 7 фото 8

Нажав на фото 7 мы увидим увеличенное изображение плунжеров. И определим, только визуально, что они сильно "поизношены".

А если говорить конкретно, то посмотрим на фото 8.

Стрелками "a" и "b" показано расстояние рабочего хода плунжера, составляющее около 6 миллиметров. В точке "а" диаметр составлял 5.975 мм, а в точке "b" 5.970 мм (вспомним "идеальные" размеры: 5.995мм).

Все эти фотографии приведены только лишь для того, что бы наглядно показать "влияние девяносто второго бензина на топливный насос высокого давления GDI".

Да, именно этот бензин так повлиял на ТНВД всего за пол-года эксплуатации.

Если все время заправляться "девяносто вторым", то ресурс ТНВД будет составлять от года до полутора лет(приблизительно, потому что бывают достаточно исключительные примеры, когда GDI "ходил" на "девяносто втором" и гораздо длительное время).

Итак, почему же именно этот бензин под таким названием и стал в нашей статье "притчей во языцах"?

"Песок" в бензине.

Именно так можно и сказать и назвать этими словами причину вышеописанной неисправности. Слово "песок" весьма условно, потому что под ним подразумеваются "посторонние примеси" к топливу: механические примеси, вода, продукты коррозии и все то, что остается в цистернах на стенках - нефть, мазут, солярка и так далее, и так далее.

Все это благополучно перемешивается во время перевозки, потом сливается в подземные емкости на АЗС и так же благополучно продается.

Можно задать вполне справедливый вопрос: "девяносто пятый - лучше?".

Да, лучше.

Только сказать "насколько лучше" - трудно, потому что каждое мнение субъективное.

Какой вывод из всего этого можно сделать?

Только один: заправляться не 92-м бензином , приобретать более дорогой, потому что только при таком условии можно как и продлить, так и "поддержать здоровье" вашего автомобиля.

МАЛОЕ ДАВЛЕНИЕ В СИСТЕМЕ

Название автомобиля было необычное: " ASPIRE", впрочем, в Японии много чего необычного. не только автомобильные названия. Двигатель 4G93 GDI.

Как работал?

Да, ничего, в принципе, если так можно сказать, привыкнув к тому, что многие GDI работают, в отличии от "обычных" бензиновых двигателей, немного по-другому.

Иногда "жестко", словно все гидрокомпенсаторы "залегли", иногда мягко и тихо - "по кошачьему".

Этот же работал - "средне", если так можно сказать.

Ничего необычного. Как и большинство. Проверка сканером показала. что и "внутри" все в полном порядке, кодов неисправностей нет, только...

Да, вот на давление, естественно, обратили самое первое и самое пристальное внимание, посмотрели что показывает сканер, а потом еще раз перепроверили все "механикой" и...руками развели перед Клиентом: "Придется насос смотреть и перебирать".

Давление было около 4Mpa , потому и сложилось такое ощущение, что двигатель хоть и работает, но все-равно "как-то не так".

Все правильно, потому что Диагностика это не только показания приборов, это еще и ощущения самого Диагноста , что он "видит, слышит и ощущает".

А при разборке ТНВД вот что оказалось:

фото 1 фото 2

Конечно, это только малая толика того, что можно было сфотографировать и показать. И взято для примера, что бы еще раз "предположить", что бездумное увлечение различного рода присадками, которые "супер" и так далее, все это ни к чему хорошему никогда не приводило. Тем более - в GDI.

Знаете ведь как часто бывает: соблазнившись разноцветными этикетками и надписями под ними (Мгновенно удаляет воду! Вечная жизнь вашему мотору!), а далее поддавшись на рассуждения продавца, которому надо только одно - продать, а дальше уже "трава не расти", человек покупает и...заливает.

На этом двигателе Клиент тоже заливал "какие-то" присадки. Какие точно - он уже и сам, наверное, затрудняется вспомнить.

Ладно, все это устранить можно, в том числе и:

От этого никуда владельцам GDI не деться, потому и надо регулярно проводить техническое обслуживание.

Кроме этого "убрали" черный нагар в канальцах ТНВД, отчистили, а точнее сказать "довели" на плите до работоспособного состояния клапана. Все вместе заняло около двух часов.

Все собрали обратно, запустили двигатель и...Ну вот, опять это "и".

Да, двигатель работал, но опять "как-то не так".

По приборам было все нормально, а вот по ощущениям - нет.

Есть такое понятие как "дать газ".

Так вот, при "резком газе" двигатель развивал обороты "чисто" (условно), а вот при "резком умеренном газе" двигатель "потраивал".

Тогда уже заново обратили внимание на систему зажигания.

На фото 5 вы видите две свечи зажигания с разным цветом нагара.

"Светлая" свеча зажигания была одна, а вот все остальные были "как и положено" - темного цвета.

После замены форсунки на том цилиндре, где свеча была "светлая" - все, даже "ощущения" улыбнулись удовлетворенно: "Машину можно отдавать".

А при чем здесь город Пермь в названии статьи, спросите вы?

Только лишь при том, что эту машину гнали оттуда в Москву только лишь для того, что бы провести техническое обслуживание.

Без комментариев?

ДАТЧИК ДАВЛЕНИЯ (ошибка №56)

Это самый "вкусный" код неисправности для Думающих Диагностов, потому что он дает простор как и рукам, так и мыслям.

Никакой конкретики в этом коде неисправности нет ("Анормальное давление..."), все только в общем, что является особенно ценным и привлекательным (естественно),для бОльшей части Диагностов.

Итак, посмотрим для начала,что "говорит нам мануал",на который и будем опираться.

Но - только опираться и не более.

Не руководствоваться.

Этот DTC полностью "завязан" на давление. Или на его определение "через" датчик давления, или на его "конкретную потерю",что так же определяет датчик давления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.