Автомобильное зарядное устройство из компьютерного бп атх. Пошаговая сборка зарядного устройства из бп компьютера для автомобильного аккумулятора. Типы электропитания персонального компьютера

Компьютеры не могут работать без электроэнергии. Чтобы их зарядить, используются специальные устройства, называемые источниками питания. Они получают напряжение переменного тока из сети и преобразуют его в постоянный ток. Устройства могут выдавать огромное количество энергии в небольшом форм-факторе, обладают встроенной защитой от перегрузки. Выдаваемые параметры у них невероятно стабильны, а качество постоянного тока обеспечено даже при высоких нагрузках. Когда есть лишний такой аппарат, разумно его использовать для многих бытовых задач, например, переделав в зарядное устройство из блока питания компьютера.

Блок имеет форму металлической коробки шириной 150 мм х 86 мм х 140 мм. Стандартно он монтируется внутри корпуса ПК с помощью четырех винтов, переключателя и розетки. Такая конструкция позволяет воздуху поступать в охлаждающий вентилятор блока питания (БП). В некоторых случаях установлен переключатель селектора напряжения, позволяющий пользователю выбирать показатели. Например, в Соединенных Штатах имеется внутренний источник питания, работающий с номинальным напряжением 120 вольт.

БП компьютера состоит из нескольких компонентов внутри: катушки, конденсаторов, электронной платы для регулирования тока и вентилятора для охлаждения. Последний является основной причиной отказа для источников питания (ИП), что надо учитывать при монтаже зарядного устройства из блока питания компьютера atx.

Типы электропитания персонального компьютера

ИП имеют определенную мощность, указанную в ваттах. Стандартный блок, как правило, способен обеспечивать около 350 Вт. Чем больше установленных на компьютере компонентов: жестких дисков, CD / DVD-приводов, ленточных накопителей, вентиляторов, тем больше энергии требуется от источника питания.

Специалисты рекомендуют использовать блок питания, который обеспечивает больше мощности, чем требуется компьютеру, поскольку он будет работать в режиме постоянной «недогрузки», что увеличит срок службы машины из-за уменьшения теплового воздействия на его внутренние компоненты.

Существует 3 типа ИП:

  1. AT Power Supply — употребляется на очень старых ПК.
  2. Блок питания ATX — все еще применяется на некоторых ПК.
  3. Электропитание ATX-2 - обычно используется сегодня.

Параметры БП, которые можно использовать при создании зарядного устройства из блока питания компьютера:

  1. AT / ATX / ATX-2:+3.3 В.
  2. ATX / ATX-2:+5 В.
  3. AT / ATX / ATX-2:-5 В.
  4. AT / ATX / ATX-2:+5 В.
  5. ATX / ATX-2:+12 В.
  6. AT / ATX / ATX-2:-12 В.

Разъемы материнской платы

В ИП есть много разных разъемов питания. Они разработаны таким образом, что при их установке нельзя ошибиться. Чтобы сделать зарядное устройство из блока питания компьютера, пользователю не нужно будет долго выбирать правильный кабель, так как он просто не поместится в разъеме.

Виды разъемов:

  1. P1 (разъем для подключения к ПК / ATX). Основная задача блока питания (PSU) - предоставить мощность материнской плате. Это делается через 20-контактный или 24-контактный разъемы. 24-контактный кабель совместим с 20-контактной материнской платой.
  2. P4 (разъем EPS).Раньше выводы материнской платы были недостаточны для обеспечения мощностью процессора. С разгонным графическим процессором, достигающим 200 Вт, была создана возможность обеспечить питание непосредственно процессору. В настоящее время это P4 или EPS, которые обеспечивают достаточную мощность процессора. Поэтому переделка блока питания компьютера в зарядное устройство экономически обоснована.
  3. Разъем PCI-E (6-контактный разъем 6 + 2). Материнская плата может обеспечить максимум 75 Вт через слот интерфейса PCI-E. Более быстрая выделенная видеокарта требует гораздо большей мощности. Для решения этой проблемы был введен разъем PCI-E.

Дешевые материнские платы оснащены 4-контактным разъемом. Более дорогие «разгонные» материнские платы имеют 8-контактные разъемы. Дополнительные обеспечивают излишнюю мощность процессора при разгоне.

Большинство блоков питания снабжены двумя кабелями: 4-контактными и 8-контактными. Нужно использовать только один из этих кабелей. Также можно разделить 8-контактный кабель на два сегмента, чтобы обеспечить обратную совместимость с более дешевыми материнскими платами.

Левые 2 контакта 8-контактного разъема (6+2) справа отсоединены для обеспечения обратной совместимости с 6-контактными графическими картами. 6-контактный разъем PCI-E может поставить дополнительный 75Вт за кабель. Если графическая карта содержит один 6-контактный разъем, он может составлять до 150 Вт (75 Вт от материнской платы + 75 Вт от кабеля).

Для более дорогих графических карт требуется 8-контактный (6+2) разъем PCI-E. С помощью 8 контактов этот разъем может обеспечивать до 150 Вт на кабель. Видеокарта с одним 8-контактным разъемом может составлять до 225 Вт (75 Вт от материнской платы + 150 Вт от кабеля).

Molex, 4-контактный периферийный разъем, используют при создании зарядного устройства из блока питания компьютера. Эти контакты работают очень долго, могут поставлять 5V (красный) или 12V (желтый) на периферийные устройства. В прошлом эти соединения часто использовались для подключения жестких дисков, CD-ROM-плееров и т. д.

Даже видеокарты Geforce 7800 GS оснащаются Molex. Однако их потребляемая мощность ограничена, поэтому в настоящее время бо́льшая часть их была заменена кабелями PCI-E и Все, что осталось, это вентиляторы с питанием.

Соединитель вспомогательного оборудования

Разъем SATA - современная замена устаревшего Molex. Все современные DVD-плееры, жесткие диски и SSD работают от мощности SATA. Разъем Mini-Molex / Floppy полностью устаревший, но некоторые БП все еще поставляются с разъемом mini-molex. Они были использованы для питания дисководов гибких дисков до 1,44 МБ данных. В основном, они сегодня заменены USB-накопителем.

Адаптер Molex-PCI-E 6-контактный для питания видеокарты.

Используя адаптер 2x-Molex-1x PCI-E 6-контактный, предварительно нужно убедиться, что подключаются оба "Молекса" к различным кабельным напряжениям. Это снижает риск перегрузки источника питания. С введением ATX12 V2.0 были внесены изменения в систему с 24-контактным разъемом. В старых ATX12V (1.0, 1.2, 1.2 и 1.3) использовался 20-контактный разъем.

Всего есть 12 версий стандарта ATX, но они настолько похожи, что пользователю не нужно беспокоиться о совместимости во время монтажа зарядного устройства из блока питания компьютера. Для обеспечения большинство современных источников позволяют отсоединить последние 4 контакта основного разъема. Также возможно создать передовую совместимость с помощью адаптера.

Напряжения питания компьютера

В компьютере требуется три типа постоянного напряжения. 12 вольт необходимо для подачи напряжения на материнскую плату, графические карты, для вентиляторов, процессора. Для USB-портов требуется 5 вольт, а для самого ЦП используется 3,3 вольта. 12 вольт также применимы для некоторых «умных» вентиляторов. Электронная плата в блоке питания отвечает за пересылку преобразуемого электричества через специальные кабельные наборы для питания устройств внутри компьютера. С помощью перечисленных выше компонентов переменное напряжение преобразуется в чистый постоянный ток.

Почти половина работы, выполняемой блоком питания, осуществляется с помощью конденсаторов. Они хранят энергию, которая будет использоваться для непрерывного рабочего потока. Изготавливая из блока питания компьютера, пользователь должен быть осторожным. Даже если компьютер отключен, есть вероятность того, что электричество будет храниться внутри блока питания в конденсаторах, даже через несколько дней после отключения.

Цветные коды кабельных наборов

Внутри источников питания пользователь видит много кабельных наборов, выходящих с различными разъемами и разными номерами. Цветовые коды кабелей питания:

  1. Черные, используются для обеспечения тока. Каждый другой цвет должен быть соединен с черным проводом.
  2. Желтый: + 12В.
  3. Красный: + 5 В.
  4. Синий: —12В.
  5. Белый: —5В.
  6. Оранжевый: 3.3В.
  7. Зеленый, контрольный провод для проверки напряжения постоянного тока.
  8. Фиолетовый: + 5 В режим ожидания.

Выходные напряжения источника питания компьютера можно измерить с помощью надлежащего мультиметра. Но из-за более высокого риска короткого замыкания пользователь должен всегда подключать черный кабель с черным на мультиметре.

Вилка силового провода

Провод жесткого диска (независимо от того, является ли это IDE или SATA) имеет четыре жилы, прикрепленных к разъему: желтую, две черных подряд, и красную. На жестком диске одновременно используются как 12V, так и 5V. 12V питает движущиеся механические детали, а 5V подает электронные схемы. Таким образом, все эти кабельные комплекты оснащены кабелями 12V и 5V одновременно.

Электрические разъемы на материнской плате для процессоров или вентиляторов шасси имеют четыре ножки, поддерживающие материнскую плату для вентиляторов 12 В или 5 В. Помимо черных, желтых и красных, другие цветные провода можно увидеть только в главном разъеме, который напрямую переходит в розетку материнской платы. Это фиолетовые, белые или оранжевые кабели, которые не используются потребителями для подключения периферийных устройств.

Если вы хотите сделать автомобильное зарядное устройство из блока питания компьютера, нужно протестировать его. Вам понадобятся скрепка и около двух минут времени. Если понадобится источник питания обратно подключить к материнской плате, просто нужно удалить скрепку. Никаких изменений от использования скрепки в нем не произойдет.

Порядок действий:

  • Найти зеленый провод в дереве кабелей из блока питания.
  • Следовать за ним до 20 или 24-контактного разъема ATX. Зеленый провод в некотором смысле «приемник», который нужен для снабжения энергией блока питания. Между ним есть два черных провода заземления.
  • Поместить скрепку в штырь с зеленым проводом.
  • Другой конец поместить в один из двух черных проводов заземления рядом с зеленым. Не важно, какой из них будет работать.

Хотя скрепка не ударит большим током, не рекомендуется прикасаться к ее металлической части, когда она находится под напряжением. Если нужно оставить скрепку на неопределенный срок, необходимо замотать ее изолентой.

Если вы начинаете делать своими руками зарядное устройство из блока питания компьютера, позаботьтесь о безопасности работ. Источник угрозы — это конденсаторы, которые несут в себе остаточный заряд электричества, способный вызвать значительную боль и ожоги. Поэтому нужно не только убедиться, что ИП надежно отключен, но и надеть изоляционные перчатки.

После открытия БП, делают оценку рабочего пространства и убеждаются, что не будет никаких проблем с расчисткой проводов.

Предварительно продумывают конструкцию источника, отмеривая карандашом, где будут находиться отверстия, чтобы отрезать провода необходимой длины.

Выполняют сортировку проводов. При этом будут необходимы: черный, красный, оранжевый, желтый и зеленый. Остальные являются лишними, поэтому их можно обрезать на монтажной плате. Зеленый говорит о включении питания после режима ожидания. Он просто припаивается к заземляющему черному проводу, что обеспечит включение БП без компьютера. Далее нужно подключить провода к 4 большим зажимам по одному для каждого набора цветов.

После этого требуется сгруппировать 4-проводные цвета вместе и отрезать их на необходимую длину, снять изоляцию и соединить в один конец. Перед сверлением отверстий нужно позаботиться о печатной плате шасси, чтобы она не была загрязнена металлическими стружками.

В большинстве БП нельзя полностью удалить печатную плату с шасси. В таком случае ее нужно аккуратно обернуть пластиковым пакетом. Закончив сверление, требуется обработать все шероховатые пятна и протереть шасси тканью от мусора и налета. Затем установить фиксирующие стойки, используя небольшую отвертку и клеммы, закрепив их с помощью плоскогубцев. После этого закрыть блок питания и обозначить маркером напряжение на панели.

Зарядка аккумулятора автомобиля от старого ПК

Это устройство поможет автолюбителю в сложной ситуации, когда нужно срочно зарядить аккумулятор автомобиля, не имея стандартного устройства, а используя лишь обычный блок питания ПК. Специалисты не рекомендуют постоянно пользоваться зарядным устройством авто из блока питания компьютера, так как напряжение 12 В немного не дотягивает до необходимого при зарядке аккумулятора. Оно должно быть 13 В, но как аварийный вариант его использовать можно. Для усиления напряжения там, где раньше было 12В, нужно поменять резистор на 2.7кОм на подстроечном резисторе, установленном на дополнительной плате БП.

Поскольку источники питания имеют конденсаторы, которые сохраняют электроэнергию в течение длительного времени, желательно их разрядить с использованием лампы накаливания 60 Вт. Чтобы прикрепить лампу, используйте два конца провода для подключения к выводам крышки. Лампа подсветки медленно погаснет, разрядив крышку. Замыкание клемм не рекомендуется, так как это приведет к большой искре и может повредить дорожки печатной платы.

Процедура изготовления своими руками зарядного устройства из блока питания компьютера начинается со снятия верхней панели блока питания. Если на верхней панели установлен вентилятор 120 мм, отсоедините 2-контактный разъем от печатной платы и снимите панель. Требуется обрезать выходные кабели от источника питания с помощью плоскогубцев. Не стоит их выбрасывать, лучше использовать повторно для нестандартных заданий. Для каждого связующего поста оставьте не более 4-5 кабелей. Остальные могут быть обрезаны на печатной плате.

Соединяются провода одного цвета и закрепляются, используя кабельные стяжки. Зеленый кабель используется для включения постоянного тока ИП. Его припаивают к клеммам GND или подключают к черному проводу из пучка. Далее отмеряют центр отверстий на верхней крышке, где должны быть закреплены фиксирующие стойки. Нужно быть особенно внимательным, если на верхней панели установлен вентилятор, а зазор между краем вентилятора и ИП мал для фиксирующих штырей. В таком случае после отметки центральных точек нужно снять вентилятор.

После этого нужно прикрепить фиксирующие стойки к верхней панели в порядке: GND, +3,3 В, +5 В, +12 В. Используя стриппер для проводов, удаляется изоляция кабелей каждого пучка, припаиваются соединения. Тепловым пистолетом обрабатывают рукава над обжимными соединениями, после чего вставляют выступы в соединительные штыри и затягивают вторую гайку.

Далее нужно вернуть вентилятор на место, подключить 2-контактный разъем к гнезду на печатной плате, вставить панель обратно в устройство, что может потребовать некоторых усилий из-за связки кабелей на перекладинах и закрыть.

Зарядное устройство для шуруповерта

Если шуруповерт имеет напряжение 12В, то пользователю повезло. Он может сделать источник питания для зарядного устройство без особых переделок. Понадобится используемый или новый БП компьютера. В нем есть несколько напряжений, но нужно 12В. Есть много проводов разных цветов. Понадобятся желтые, которые выдают 12В. Перед началом работ пользователь должен убедится, что ИП отключен от источника энергии и не имеет остаточного напряжения в конденсаторах.

Теперь можно начинать переделывать блок питания компьютера в зарядное устройство. Для этого нужно желтые провода подключить к разъему. Это будет выход 12В. Сделать то же самое для черных проводов. Это разъемы, в которые будет подключаться зарядное устройство. В блоке напряжение 12В не является первичным, поэтому подключается резистор к красному проводу 5В. Далее нужно соединить серый и один черный провод вместе. Это сигнал, который говорит об энергоснабжении. Цвет этого провода может варьироваться, поэтому нужно убедиться, что это сигнал PS-ON. Это должно быть написано на наклейке блока питания.

После включения переключателя БП должен запускаться, вентилятор вращаться, а лампочка загораться. Проверив разъемы с помощью мультиметра, нужно убедиться, что блок выдает 12 В. Если это так, то зарядное устройство шуруповерта из блока питания компьютера функционирует правильно.

На самом деле вариантов приспособления блока питания под собственные нужды множество. Любители поэкспериментировать с удовольствием делятся своим опытом. Предлагаем несколько хороших советов.

Пользователям не стоит бояться модернизировать коробку блока: можно добавить светодиоды, наклейки или все, что нужно для совершенствования. Разбирая провода, нужно убедиться, что используется блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у пользователя нет данных об этих проводах, ему не стоить переоборудовать блок, так как схема может быть собрана неправильно, что приведет к аварии.

Некоторые современные источники питания имеют провод связи, который должен быть подключен к источнику питания для его работы. Серый провод подключается к оранжевому, а розовый - к красному. Силовой резистор с высокой мощностью может стать горячим. В этом случае нужно использовать в конструкции радиатор для охлаждения.

Аккумуляторная батарея - устройство, которое в ходе эксплуатации изнашивается и разряжается. Для заряда АКБ используется специальный прибор, который можно купить или сделать своими руками. О том, как соорудить зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука, мы расскажем ниже.

[ Скрыть ]

Как сделать зарядку для АКБ из блока питания компьютера?

Стоимость качественных зарядных приборов высокая. Поэтому многие автовладельцы решают переделать блок питания АТХ от стационарного ПК в ЗУ. Эта процедура не особо сложная, но прежде чем приступить к выполнению задачи и переделать блок питания на зарядку, которая сможет заряжать машинную АКБ, следует разобраться в требованиях, которые предъявляются к ЗУ. В частности, максимальный уровень напряжения, подводимый к АКБ, должен быть не более 14,4 вольта, чтобы не допустить быстрого износа батареи.

Пользователь Vetal в своем ролике показал, как можно переделать БП в зарядный прибор.

Готовимся к выполнению задачи

Чтобы соорудить самоделку ЗУ из компьютерного БП на 200W, 300W либо 350W (ШИМ 3528), потребуются следующие материалы и инструменты:

  • зажимы («крокодилы») для подключения к АКБ;
  • резисторный элемент на 2,7 кОм, а также на 1 кОм и 0,5 Вт;
  • паяльник с оловом и канифолью;
  • две отвертки (с крестовым и плоским наконечником);
  • резисторные элементы на 200 Ом и 2 Вт, а также на 68 Ом и 0,5 Вт;
  • обычное машинное реле на 12В;
  • два конденсаторных элемента на 25В;
  • три диода 1N4007 на 1 ампер;
  • светодиодный элемент (любого цвета, но лучше - зеленый);
  • силиконовый герметик;
  • вольтамперметр;
  • два гибких медных провода (1 метр каждый).

Также потребуется сам блок питания, который должен иметь следующие характеристики:

  • величина выходного напряжения - 12 вольт;
  • параметр номинального напряжения - 110/220 В;
  • величина мощности - 230 Вт;
  • параметр максимального тока - не выше 8 ампер.

Пошаговая инструкция

Процедура заряда машинной батареи производится под напряжением, величина которого от 13,9 до 14,4 вольта. Все стационарные блоки работают с напряжением 220 В, поэтому первостепенная задача - снизить рабочий параметр до 14,4 В. В основе зарядного девайса применяется микросхема TL494 (7500), при ее отсутствии можно использовать аналог. Микросхема нужна для генерирования сигналов и используется как драйвер транзисторного элемента, предназначенного для защиты прибора от повышенного тока. На дополнительной плате БП имеется еще одна схема - TL431 либо другая, аналогичная, предназначенная для регулировки параметра напряжения на выходе. Здесь же располагается резисторный элемент для настройки, с помощью которого можно отрегулировать величину выходного напряжения в узком интервале.

Подробно о том, как переделать компьютерный БП в зарядный прибор для АКБ машины, узнайте из ролика, опубликованного каналом «Паяльник TV».

Чтобы произвести своими руками переделку БП от компа в зарядку для авто, ознакомьтесь со схемой и следуйте инструкции:

  1. Для начала из компьютерного БП ATX надо демонтировать все лишние составляющие и элементы, после чего от него отпаиваются кабели. Воспользуйтесь паяльником, чтобы не повредить контакты. Надо удалить переключатель 220/110 вольт с кабелями, подключенными к нему. После удаления переключателя вы сможете предотвратить возможность перегорания БП, если случайно переключите его на 110 В.
  2. Затем от устройства отпаиваются и удаляются ненужные кабели. Уберите провод синего цвета, подключенный к конденсаторному элементу, воспользуйтесь паяльником. В некоторых БП к конденсатору подсоединяется два провода, удалить следует оба. Также на плате вы увидите пучок кабелей желтого цвета с выводом на 12 вольт, их должно быть четыре штуки, оставляйте все. Здесь же должно быть четыре провода черного цвета, их тоже надо оставить, поскольку это масса или заземление. Надо оставить еще один зеленый проводок, все остальные убираются.
  3. Обратите внимание на схему. По проводку желтого цвета вы сможете найти два конденсаторных элемента в электроцепи на 12 вольт. Их рабочий параметр напряжения составляет 16 В, поэтому сразу же удалите их путем выпаивания и установите два конденсатора на 25 В. Конденсаторные элементы вздуваются и становятся неработоспособными. Если даже они целые и с виду рабочие, рекомендуем их поменять.
  4. Теперь надо выполнить задачу, чтобы блок питания при каждом включении в бытовую сеть автоматически активировался. Суть в том, что когда БП установлен в компьютере, его активация осуществляется в случае замыкания определенных контактов на выходе. Надо удалить защиту от скачков напряжения. Этот элемент предназначен для автоматического отключения БП компьютера от бытовой сети в случае перенапряжения. Удалить его надо, потому что для оптимальной работы ПК требуется 12 вольт, а для функционирования зарядного устройства надо 14,4 В. Защита, установленная в блоке, воспримет 14,4 вольта как скачок напряжения, в результате чего ЗУ отключится и не сможет зарядить аккумулятор автомобиля.
  5. К оптрону на плате проходят два импульса - действия от защиты по скачкам напряжения отключения, а также активации и деактивации. В общей сложности на схеме имеется три оптрона. Благодаря этим элементам осуществляется связь между входной и выходной составляющими блока. Эти части называются высоковольтными и низковольтными. Для того чтобы защита не срабатывала при скачках напряжения, вам следует замкнуть контакты оптрона, это можно сделать при помощи перемычки, выполненной из припоя. Это действие позволит обеспечить бесперебойную работу БП, когда он будет включен в бытовую сеть.
  6. Теперь надо добиться того, чтобы величина исходящего напряжения составила 14,4 вольта. Для выполнения задачи потребуется плата TL431, установленная на дополнительной схеме. Благодаря этому компоненту выполняется настройка напряжения на всех каналах, идущих от устройства. Для увеличения рабочего параметра потребуется подстроечный резисторный элемент, расположенный на этой же схеме. С его помощью вы сможете увеличить напряжение до 13 вольт, но этого недостаточно для оптимальной работы зарядного устройства. Поэтому резистор, подключенный последовательно с подстроечным компонентом, подлежит замене. Его следует выпаять, а вместо него установить аналогичную деталь, сопротивление которой должно быть ниже 2,7 кОм. Это позволит увеличить диапазон регулировки выходного параметра и получить необходимые 14,4 вольта.
  7. Удалите транзисторный элемент, установленный рядом с платой TL431. Эта деталь может негативно повлиять на функциональность схемы. Транзистор будет мешать устройству поддерживать нужное напряжение на выходе. На фото ниже вы увидите элемент, он отмечен красным.
  8. Чтобы девайс для зарядки АКБ имел стабильное напряжение на выходе, надо повысить рабочий параметр нагрузки по каналу, где проходило напряжение в 12 вольт. Есть дополнительный канал на 5 вольт, но его использовать не надо. Для обеспечения нагрузки потребуется резисторный компонент, рабочая величина сопротивления которого составит 200 Ом, а мощность - 2 Вт. На дополнительный канал устанавливается деталь на 68 Ом, величина мощности которой составляет 0,5 Вт. Когда резисторные элементы будут припаяны, вы сможете отрегулировать величину напряжения на выходе до 14,4 вольта, при этом не потребуется нагрузка.
  9. Затем следует ограничить выходную величину силы тока. Этот параметр индивидуален для любого блока питания. У нас величина силы тока должна быть не более 8 ампер. Чтобы обеспечить это, потребуется повысить номинал резисторного компонента, установленного в первичной цепи обмотки, рядом с трансформаторным устройством. Последнее используется в качестве датчика, предназначенного для определения значения перегрузки. Для увеличения номинальной величины, резистор подлежит замене, вместо него монтируется компонент с сопротивлением на 0,47 Ом, а величина мощности составит 1 Вт. Осторожно выпаивается резистор, вместо него впаивается новый. После выполнения этой задачи деталь будет использоваться в качестве датчика, поэтому величина силы тока на выходе будет не более 10 ампер, даже если произойдет замыкание.
  10. Для обеспечения защиты машинной АКБ от неправильной полярности при подсоединении самодельного зарядного девайса в устройство устанавливается дополнительная схема. Речь идет о плате, которую вам предстоит сделать самостоятельно, поскольку в самом блоке ее нет. Для ее разработки потребуется подготовленное реле на 12 вольт, в котором должно быть четыре клеммы. Также понадобятся диодные компоненты, сила тока которых составит 1 ампер. Как вариант, можно использовать детали 1N4007. Схема должна быть дополнена светодиодом, который будет свидетельствовать о состоянии процесса зарядки. Если лампочка горит, то машинная АКБ подсоединена к зарядному устройству правильно. Помимо этих компонентов, потребуется резисторный элемент, рабочее сопротивление которого составит 1 кОм, а мощность - 0,5 Вт. Принцип действия схемы такой. АКБ подсоединяется через кабели к выходу самодельного зарядного устройства. Происходит активация реле благодаря энергии, которая осталась от аккумулятора. После срабатывания элемента начинается процесс зарядки от ЗУ, о чем свидетельствует активация диодной лампочки.
  11. При деактивации катушки в результате воздействия электродвижущей силы самоиндукции происходит скачок напряжения. Чтобы не допустить его негативного воздействия на работу зарядного девайса, в плату надо добавить два диодных компонента параллельным способом. Реле фиксируется на радиаторном устройстве БП при помощи герметика. Благодаря этому материалу можно обеспечить эластичность, а также невосприимчивость деталей к термическим нагрузкам. Речь идет о сжатии и расширении, о прогревании и охлаждении. Когда клей высохнет, к контактам реле надо подсоединить оставшиеся компоненты. Если герметик отсутствует, для фиксации подойдут обычные болты.
  12. На последнем этапе к блоку подключаются провода с «крокодилами». Лучше применять кабели разных цветов, к примеру, черного и красного или красного и синего. Это позволит не допустить спутывания полярности. Длина провода будет не меньше одного метра, а их сечение должно составить 2,5 мм2. К концам кабелей подключаются зажимы, предназначенные для фиксации на клеммах аккумулятора. Чтобы зафиксировать провода на корпусе самодельного зарядного девайса, в радиаторном устройстве просверливаются два отверстия соответствующего диаметра. Через получившиеся отверстия продеваются две нейлоновые стяжки, с помощью которых кабели будут фиксироваться. В зарядное устройство можно вмонтировать амперметр, он позволит контролировать величину силы тока. Подключение прибора осуществляется параллельным образом к цепи БП.
  13. Остается протестировать работоспособность собранного своими руками ЗУ.

1. Красным отмечена перемычка на схеме 2. Транзисторный элемент на плате, который надо удалить 3. Резисторный элемент в первичной цепи, подлежащий замене 4. Схема для сборки платы, предназначенной для защиты БП при нарушении полярности

Зарядное устройство из БП ноутбука

Можно соорудить зарядный девайс из блока питания ноутбука.

Напрямую подключать БП к аккумуляторным клеммам нельзя.

Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.

Без переделки БП

Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.

С переделкой блока питания

Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.

Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:

  1. Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
  2. Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
  3. Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
  4. Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
  5. Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
  6. Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
  7. Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный - в виде оплетки.
  8. В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.

Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.

Как правильно зарядить АКБ самодельной зарядкой?

Чтобы не допустить быстрого выхода из строя АКБ, надо учитывать определенные нюансы по правильной подзарядке.

  1. Сначала отключите клеммы батареи от зажимов. Открутите болты, которые крепят фиксирующую планку аккумулятора.
  2. Демонтируйте устройство из посадочного места, отнесите домой или в гараж.
  3. Прочистите корпус от загрязнений. Обратите внимание на сами клеммы. Если на них есть окисления, их следует очистить. Используйте зубную или строительную щетку, подойдет наждачная бумага мелкой зернистости. Главное - не счистить рабочий налет.
  4. Если аккумулятор обслуживаемый, откройте все его банки и проверьте в них уровень электролита. Рабочий раствор должен покрывать все секции. Если это не так, то заряд батареи может привести к быстрому испарению кипящей жидкости, что отразится на функциональности батареи и ее исправности в целом. При необходимости добавьте в банки дистиллированную воду. Визуально осмотрите корпус батареи на предмет дефектов, иногда утечка жидкости связана с наличием трещин. Если повреждения серьезные, то АКБ подлежит замене.
  5. Подключите зажимы самодельного ЗУ к клеммам АКБ, соблюдая полярность. После этого девайс можно подключать к бытовой сети. Пробки на банках при этом откручивать не надо.
  6. Когда процедура заряда будет завершена, проверьте уровень электролита и если все нормально, то закрутите банки. Установите батарею в автомобиль и убедитесь, что она в рабочем состоянии.

Заключение

Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет . Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.

Зарядное устройство из компьютерного БП

Если у вас лежит старый блок питания от компьютера, ему можно найти легкое применение,особенно если вас интересует зарядное устройство для автомобильного аккумулятора своими руками .

Внешний вид данного устройства представлен на картинке.Переделку легко осуществить, и позволяет заряжать аккумуляторы емкостью 55...65 А*ч

т.е практически любые батареи.

Фрагмент принципиальной схемы переделок штатного БП изображён на фото:


В качестве DA1 практически во всех блоках питания (БП) персональных компьютеров (ПК) используется ШИ-контроллер TL494 или его аналог KA7500.

Автомобильные аккумуляторные батареи (АКБ) имеют электрическую ёмкость 55...65 А.ч. Являясь свинцовыми кислотными аккумуляторами, они требуют для своего заряда ток 5,5...6,5 А - 10% от своей ёмкости, а такой ток по цепи "+12В" может обеспечить любой БП мощностью более 150 Вт.

Предварительно необходимо выпаять все ненужные провода цепей "-12 В", "-5 В", "+5 В", "+12 В".

Резистор R1 сопротивлением 4,7 кОм, подающий напряжение +5 В на вывод 1, необходимо выпаять. Вместо него будет использован подстроечный резистор номиналом 27 кОм, на верхний вывод которого будет подаваться напряжение с шины +12 В.

Вывод 16 отключить от от общего провода, а соединение 14-го и 15-го выводов перерезать.

Начало переделки БП в автоматическое зарядное устройство изображено на фотографии:


На задней стенке БП, которая теперь станет передней, на плате из изоляционного материала закрепляем потенциометр-регулятор тока зарядки R10. Также пропускаем и закрепляем сетевой шнур и шнур для подключения к клеммам аккумуляторной батареи.

Для надёжного и удобного подключения и регулировки был изготовлен блок резисторов:


Вместо рекомендованного в первоисточнике токоизмерительного резистора С5-16МВ мощностью 5 Вт и сопротивлением 0,1 Ом я установил два импортных 5WR2J - 5 Вт; 0,2 Ом, соединив их параллельно. В результате суммарная их мощность стала 10 Вт, а сопротивление - необходимые 0,1 Ом.

На этой же плате установлен подстроечный резистор R1 для настройки собранного зарядного устройства.

Для исключения нежелательных связей корпуса устройства с общей цепью зарядки необходимо удалить часть печатной дорожки.

Установка платы блока резисторов и электрические соединения согласно принципиальной схемы показаны на фотографии:


На фото не видны места паек к выводам 1, 16, 14, 15 микросхемы. Эти выводы предварительно надо облудить, а затем подпаять тонкие многожильные провода с надёжной изоляцией.

До окончательной сборки прибора переменным резистором R1 необходимо при среднем положении потенциометра R10 выставить напряжение холостого хода в пределах 13,8...14,2 В. Это напряжение будет соответствовать полному заряду аккумуляторной батареи.

Комплектация автоматического зарядного устройства представлена на фотографии:


Выводы для подключения к клеммам АКБ заканчиваются зажимами типа "крокодил" с натянутыми изоляционными трубками разного цвета. Красному цвету соответствует плюсовой вывод, чёрному - минусовой.

Предупреждение : ни в коем случае нельзя перепутать подключение проводов! Это выведет прибор из строя!

Процесс зарядки АКБ 6СТ-55 иллюстрирует фотография:

Цифровой вольтметр показывает 12,45 В, что соответствует начальному циклу зарядки. Вначале потенциометр устанавливают на отметку "5,5", что соответствует начальному току заряда 5,5 А. По мере зарядки напряжение напряжение на АКБ увеличивается, постепенно достигая максимума, выставленного переменным резистором R1, а ток зарядки уменьшается, спадая практически до 0 в конце зарядки.

При полной зарядке устройство переходит в режим стабилизации напряжения, компенсируя ток саморазряда аккумуляторной батареи. В этом режиме без опасения перезарядки, других нежелательных явлений, устройство может оставаться неограниченное время.

При повторении устройства я пришёл к выводу, что применение вольтметра и амперметра совсем необязательны, если зарядное устройство используется только для зарядки автомобильных аккумуляторных батарей, где полному заряду соответствует напряжение 14,2 В, а для задания начального тока зарядки вполне достаточно отградуированной шкалы потенциометра R10 от 5,5 до 6,5 А.

Получилось лёгкое, надёжное устройство с автоматическим циклом зарядки, не требующее в процессе работы вмешательства человека.

Рассказать в:

Введение.

Скопилось у меня много компьютерных БП, отремонтированных в качестве тренировки этого процесса, но для современных компьютеров уже слабоватых. Что с ними делать?

Решил несколько переделать в ЗУ для зарядки 12В автомобильных аккумуляторов.

Вариант 1.

Итак: начали.

Первым мне подвернулся под руку Linkworld LPT2-20. У этого зверька оказался ШИМ на м/с Linkworld LPG-899. Посмотрел даташит, схему БП и понял – элементарно!

Что оказалось просто шикарно – она питается от 5VSB, т.е наши переделки никак не повлияют на режим её работы. Ноги 1,2,3 используются для контроля выходных напряжений 3,3В, 5В и 12В соответственно в пределах допустимых отклонений. 4-я нога тоже является входом защиты и используется для защиты от отклонений -5В, -12В. Нам все эти защиты не просто не нужны, а даже мешают. Поэтому их надо отключить.

По пунктам:

Стадия разрушения на этом окончена, пора переходить к созиданию.


По большому счету ЗУ у нас уже готово, но в нем нет ограничения зарядного тока (хотя защита от КЗ работает). Для того чтобы ЗУ не давало на аккумулятор столько «сколько влезет» – добавляем цепь на VT1, R5, C1, R8, R9, R10. Как она работает? Очень просто. Пока падение напряжения на R8 подаваемое на базу VT1 через делитель R9, R10 не превышает порог открывания транзистора – он закрыт и не влияет на работу устройства. А вот когда он начинает открываться, то к делителю на R4, R6, R12 добавляется ветка из R5 и транзистора VT1, меняя тем самым его параметры. Это приводит к падению напряжения на выходе устройства и, как следствие, к падению зарядного тока. При указанных номиналах, ограничение начинает работать примерно с 5А, плавно понижая выходное напряжение с ростом тока нагрузки. Настоятельно рекомендую эту цепь не выбрасывать из схемы, иначе, при сильно разряженном аккумуляторе ток может быть настолько большим, что сработает штатная защита, или вылетят силовые транзисторы, или шоттки. И зарядить свой аккумулятор вы не сможете, хотя сообразительные автолюбители догадаются на первом этапе включить автомобильную лампу между ЗУ и аккумулятором чтобы ограничить зарядный ток.

VT2, R11, R7 и HL1 занимается «интуитивной» индикацией тока заряда. Чем ярче горит HL1 – тем больше ток. Можно не собирать, если нет желания. Транзистор VT2 – должен быть обязательно германиевый, потому что падение напряжения на переходе Б-Э у него значительно меньше, чем у кремниевого. А значит, и открываться он будет раньше чем VT1.

Цепь из F1 и VD1, VD2 обеспечивает простейшую защиту от переполюсовки. Очень рекомендую сделать её или собрать другую на реле или чём-нибудь ещё. Вариантов в сети можно найти много.

А теперь о том, зачем нужно оставить канал 5В. Для вентилятора 14,4В многовато, особенно с учетом того что при такой нагрузке БП не греется вообще, ну кроме сборки выпрямителя, она немного греется. Поэтому, мы подключаем его к бывшему каналу 5В (сейчас там - около 6В), и он тихо и нешумно выполняет свою работу. Естественно, с питанием вентилятора есть варианты: стабилизатор, резистор и т.п. В дальнейшем некоторые из них мы увидим.

Всю схему я свободно смонтировал на освобожденном от ненужных деталей месте, не делая никаких плат, с минимумом дополнительных соединений. Выглядело это всё после сборки так:


В итоге, что мы имеем?

Получилось ЗУ с ограничением максимального зарядного тока (достигается уменьшением подаваемого на аккумулятор напряжения при превышении порога в 5А) и стабилизированным максимальным напряжением на уровне 14,4В, что соответствует напряжению в бортовой сети автомобиля. Поэтому, его можно смело использовать, не отключая аккумулятор от бортовой электроники. Это зарядное устройство можно смело оставлять без присмотра на ночь, батарея никогда не перегреется. К тому же оно почти бесшумное и очень лёгкое.

Если вам максимального тока в 5-7А маловато (ваш аккумулятор бывает часто сильно разряжен), можно легко увеличить его до 7-10А, заменив резистор R8 на 0,1Ом 5Вт. Во втором БП с более мощной сборкой по 12В именно так я и сделал:


Вариант 2.

Следующим подопытным у нас будет БП Sparkman SM-250W реализованный на широко известном и горячо любимом ШИМ TL494 (КА7500).

Переделка такого БП ещё проще, чем на LPG-899, так как в ШИМ TL494 нет никаких встроенных защит по напряжениям каналов, зато есть второй компаратор ошибки, который зачастую свободен (как и в данном случае). Схема оказалась практически один к одному со схемой PowerMaster. Её я и взял за основу:

План действий:

Это был, пожалуй, самый экономичный вариант. Выпаянных деталей у вас останется гораздо больше чем затраченных J. Особенно если учесть что сборка SBL1040CT была извлечена из канала 5В, а туда были впаяны диоды, в свою очередь добытые, с канала -5В. Все затраты состояли из крокодилов, светодиода и предохранителя. Ну, можно ещё ножки приделать для красоты и удобства.

Вот плата в полном сборе:

Если вас пугают манипуляции с 15 и 16-й ногами ШИМ, подбор шунта с сопротивлением в 0,005Ом, устранение возможных сверчков, можно переделать БП на TL494 и несколько другим способом.

Вариант 3.

Итак: наша следующая «жертва» - БП Sparkman SM-300W. Схема абсолютно аналогична варианту 2, но имеет на борту более мощную выпрямительную сборку по 12В каналу, более солидные радиаторы. Значит - с него мы возьмем больше, например 10А.

Этот вариант однозначен для тех схем, где ноги 15 и 16 ШИМ уже задействованы и вы не хотите разбираться – зачем и как это можно переделать. И вполне пригоден для остальных случаев.

Повторим в точности пункты 1 и 2 из второго варианта.

Канал 5В, в данном случае, я демонтировал полностью.

Чтобы не пугать вентилятор напряжением в 14,4В - собран узел на VT2, R9, VD3, HL1. Он не позволяет превышать напряжение на вентиляторе более чем 12-13В. Ток через VT2 небольшой, нагрев транзистора тоже, можно обойтись без радиатора.

С принципом действия защиты от переполюсовки и схемы ограничителя зарядного тока и вы уже знакомы, но вот место его подключения здесь - иное.


Управляющий сигнал с VT1 через R4 заведен на 4-ю ногу KA7500B (аналог TL494). На схеме не отображено, но там должен был остаться от оригинальной схемы резистор в 10кОм с 4-й ноги на землю, его трогать не надо .

Действует это ограничение так. При небольших токах нагрузки транзистор VT1 закрыт и на работу схемы никак не влияет. На 4-й ноге напряжение отсутствует, так как она посажена на землю через резистор. А вот когда ток нагрузки растет, падение напряжения на R6 и R7 соответственно тоже растет, транзистор VT1 начинает открываться и совместно с R4 и резистором на землю они образуют делитель напряжения. Напряжение на 4-й ноге возрастает, а так как потенциал на этой ноге, согласно описанию TL494, непосредственно влияет на максимальное время открытия силовых транзисторов, то ток в нагрузке уже не растет. При указанных номиналах порог ограничения составил 9,5-10А. Основное отличие от ограничения в варианте 1, несмотря на внешнюю похожесть, резкая характеристика ограничения, т.е. при достижении порога срабатывания, напряжение на выходе спадает быстро.

Вот этот вариант в готовом виде:

Кстати, эти зарядки можно использовать и в качестве источника питания для автомагнитолы, переноски на 12В и других автомобильных устройств. Напряжение стабилизировано, максимальный ток ограничен, спалить что-нибудь будет не так то просто.

Вот готовая продукция:

Переделка БП под зарядное по такой методике – дело одного вечера, но для себя любимого времени не жалко?

Тогда позвольте представить:

Вариант 4.

За основу взято БП Linkworld LW2-300W на ШИМ WT7514L (аналог уже знакомой нам по первому варианту LPG-899).

Ну что ж: демонтаж ненужных нам элементов осуществляем согласно варианту 1, с той лишь разницей, что канал 5В тоже демонтируем – он нам не пригодится.

Здесь схема будет более сложной, вариант с монтажом без изготовления печатной платы в данном случае – не вариант. Хотя и полностью от него мы отказываться не будем. Вот приготовленная частично плата управления и сама жертва эксперимента ещё не отремонтированная:

А вот она уже после ремонта и демонтажа лишних элементов, а на втором фото с новыми элементами и на третьем её обратная сторона с уже проклеенными прокладками изоляции платы от корпуса.

То, что обведено на схеме рис.6 зеленой линией – собрано на отдельной плате, остальное было собрано на освободившемся от лишних деталей месте.

Для начала попробую рассказать: чем это зарядное отличается от предыдущих устройств, а уж потом расскажу какие детали, за что отвечают.

  • Включение зарядного происходит только при подключении к нему источника ЭДС (в данном случае аккумулятора), вилка при этом должна быть включена в сеть заблаговременно J.
  • Если по каким-либо причинам напряжение на выходе превысит 17В или окажется менее 9В – ЗУ отключается.
  • Максимальный ток заряда регулируется переменным резистором от 4 до 12А, что соответствует рекомендуемым токам заряда аккумуляторов от 35А/ч до 110А/ч.
  • Напряжение заряда регулируется автоматически 14,6/13,9В, либо 15,2/13,9В в зависимости от выбранного пользователем режима.
  • Напряжение питания вентилятора регулируется автоматически в зависимости от тока заряда в диапазоне 6-12В.
  • При КЗ или переполюсовке срабатывает электронный самовосстанавливающийся предохранитель на 24А, схема которого, с незначительными изменениями, была заимствована из разработки почетного кота победителя конкурса 2010г Simurga. Скорость в микросекундах не мерил (нечем), но штатная защита БП дернуться не успевает – он гораздо быстрее, т.е. БП продолжает работать как ни в чём не бывало, только вспыхивает красный светодиод срабатывания предохранителя. Искр, при замыкании щупов практически не видно, даже при переполюсовке. Так что очень рекомендую, на мой взгляд эта защита лучшая, по крайней мере из тех что я видел (хотя и немного капризная на ложные срабатывания в частности, возможно придётся посидеть с подбором номиналов резисторов).

Теперь, кто за что отвечает:

  • R1, C1, VD1 – источник опорного напряжения для компараторов 1, 2 и 3.
  • R3, VT1 – цепь автозапуска БП при подключении аккумулятора.
  • R2, R4, R5, R6, R7 – делитель опорных уровней для компараторов.
  • R10, R9, R15 – цепь делителя защиты от перенапряжения на выходе о которой я упоминал.
  • VT2 и VT4 с окружающими элементами – электронный предохранитель и токовый датчик.
  • Компаратор OP4 и VT3 с резисторами обвязки – регулятор оборотов вентилятора, информация о токе в нагрузке, как видите, поступает от токового датчика R25, R26.
  • И наконец, самое важное - компараторы с 1-го по 3-й обеспечивают автоматическое управление процессом заряда. Если аккумулятор достаточно сильно разряжен и хорошо «кушает» ток, ЗУ ведет заряд в режиме ограничения максимального тока установленного резистором R2 и равном 0,1С (за это отвечает компаратор ОР1). При этом, по мере заряда аккумулятора, напряжение на выходе зарядного будет расти и при достижении порога 14,6 (15,2), ток начнет уменьшаться. Вступает в работу компаратор ОР2. Когда ток заряда упадет до 0,02-0,03С (где С емкость аккумулятора а А/ч), ЗУ перейдет на режим дозаряда напряжением 13,9В. Компаратор OP3 используется исключительно для индикации, и никакого влияния на работу схемы регулировки не оказывает. Резистор R2 не просто меняет порог максимального тока заряда, но и меняет все уровни контроля режима заряда. На самом деле, с его помощью выбирается емкость заряжаемого аккумулятора от 35А/ч до 110А/ч, а ограничение тока это «побочный» эффект. Минимальное время заряда будет при правильном его положении, для 55А/ч примерно посередине. Вы спросите: «почему?», да потому что если, к примеру, при зарядке 55А/ч аккумулятора поставить регулятор в положение 110А/ч – это вызовет слишком ранний переход к стадии дозаряда пониженным напряжением. При токе 2-3А, вместо 1-1,5А, как задумывалось разработчиком, т.е. мной. А при выставлении 35А/ч будет мал начальный ток заряда, всего 3,5А вместо положенных 5,5-6А. Так что если вы не планируете постоянно ходить смотреть и крутить ручку регулировки, то выставляйте как положено, так будет не только правильнее, но и быстрее.
  • Выключатель SA1 в замкнутом состоянии переводит ЗУ в режим «Турбо/Зима». Напряжение второй стадии заряда повышается до 15,2В, третья остается без существенных изменений. Рекомендуется для заряда при минусовых температурах аккумулятора, плохом его состоянии или при недостатке времени для стандартной процедуры заряда, частое использование летом при исправном аккумуляторе не рекомендуется, потому что может отрицательно сказаться на сроке его службы.
  • Светодиоды, помогают ориентироваться, на какой стадии находится процесс заряда. HL1 – загорается при достижении максимально допустимого тока заряда. HL2 – основной режим заряда. HL3 – переход в режим дозаряда. HL4 – показывает что заряд фактически окончен и аккумулятор потребляет менее 0,01С (на старых или не очень качественных аккумуляторах до этого момента может и не дойти, поэтому ждать очень долго не стоит). Фактически аккумулятор уже хорошо заряжен после зажигания HL3. HL5 – загорается при срабатывании электронного предохранителя. Чтобы вернуть предохранитель в исходное состояние, достаточно кратковременно отключить нагрузку на щупах.

Что касается наладки. Не подключая плату управления или не запаивая в неё резистор R16 подбором R17 добиться напряжения 14,55-14,65В на выходе. Затем подобрать R16 таким, чтобы в режиме дозаряда (без нагрузки) напряжение падало до 13,8-13,9В.

Вот фото устройства в собранном виде без корпуса и в корпусе:

Вот собственно и всё. Зарядка была испытана на разных аккумуляторах, адекватно заряжает и автомобильный, и от UPS (хотя все мои зарядки заряжают любые на 12В нормально, потому что напряжение стабилизировано J). Но это побыстрее и ничего не боится, ни КЗ, ни переполюсовки. Правда, в отличие от предыдущих, в качестве БП использовать не получится (очень оно стремится управлять процессом и не хочет включаться при отсутствии напряжения на входе). Зато, его можно использовать в качестве зарядного для аккумуляторов резервного питания, вообще не отключая никогда. Заряжать будет в зависимости от степени разряда автоматически, а из-за малого напряжения в режиме дозаряда существенного вреда аккумулятору не принесет даже при постоянном включении. При работе, когда аккумулятор уже почти заряжен, возможен переход зарядного в импульсный режим заряда. Т.е. ток зарядки колеблется от 0 до 2А с интервалом от 1 до 6 секунд. Сначала, хотел было устранить это явление, но, почитав литературу – понял, что это даже хорошо. Электролит лучше перемешивается, и даже иногда способствует восстановлению потерянной емкости. Поэтому решил оставить так как есть.

Вариант 5.

Ну вот, попалось что-то новенькое. На этот раз LPK2-30 с ШИМ на SG6105. Такого «зверя» мне для переделки раньше мне ещё не попадалось. Но я вспомнил многочисленные вопросы на форуме и жалобы пользователей на проблемы по переделке блоков на этой м/с. И принял решение, хоть зарядка мне больше и не нужна, нужно победить эту м/с из спортивного интереса и на радость людям. А заодно и опробовать на практике, возникшую в моей голове идею оригинального способа индикации режима заряда.

Вот он, собственной персоной:

Начал, как обычно, с изучения описания. Обнаружил, что она похожа на LPG-899, но есть и некоторые отличия. Наличие 2-х встроенных TL431 на борту, вещь конечно интересная, но… для нас - несущественная. А вот отличия в цепи контроля напряжения 12В, и появление входа для контроля отрицательных напряжений, несколько усложняет нашу задачу, но в разумных пределах.

В результате раздумий и непродолжительных плясок с бубном (куда уж без них) возник вот такой проект:

Вот фото этого блока уже переделанного на один канал 14,4В, пока без платы индикации и управления. На втором его обратная сторона:

А это внутренности блока в сборе и внешний вид:

Обратите внимание, что основная плата была развернута на 180 градусов, от своего первоначального расположения, для того чтобы радиаторы не мешали монтажу элементов передней панели.

В целом это немного упрощённый вариант 4. Разница заключается в следующем:

  • В качестве источника для формирования «обманных» напряжений на входах контроля было взято 15В с питания транзисторов раскачки. Оно в комплекте с R2-R4 делает всё необходимое. И R26 для входа контроля отрицательных напряжений.
  • Источником опорного напряжения для уровней компаратора было взято напряжение дежурки, оно же питание SG6105. Ибо, большая точность, в данном случае, нам не нужна.
  • Регулировка оборотов вентилятора тоже была упрощена.

А вот индикация была немного модернизирована (для разнообразия и оригинальности). Решил сделать по принципу мобильного телефона: банка наполняющаяся содержимым. Для этого я взял двухсегментный светодиодный индикатор с общим анодом (схеме верить не надо – не нашёл в библиотеке подходящего элемента, а рисовать было лень L), и подключил как показано на схеме. Получилось немного не так как задумывал, вместо того чтобы средние полоски «g» при режиме ограничения тока заряда гасли, вышло, что они - мерцают. В остальном - всё нормально.

Индикация выглядит так:

На первом фото режим заряда стабильным напряжением 14,7В, на втором – блок в режиме ограничения тока. Когда ток станет достаточно низким, у индикатора загорятся верхние сегменты, и напряжение на выходе зарядного упадёт до 13,9В. Это можно увидеть на фото приведённом немного выше.

Так как напряжение на последней стадии всего 13,9В можно спокойно дозаряжать аккумулятор сколь угодно долго, вреда ему это не принесёт, потому что генератор автомобиля обычно даёт большее напряжение.

Естественно, в этом варианте можно использовать и плату управления из варианта 4. Обвязку GS6105 только нужно сделать так, как здесь.

Да, чуть не забыл. Резистор R30 устанавливать именно так - совсем не обязательно. Просто, у меня никак не выходило подобрать номинал впараллель к R5 или R22 чтобы получить на выходе нужное напряжение. Вот и вывернулся таким… нетрадиционным образом. Можно просто подобрать номиналы R5 или R22, как я делал в других вариантах.

Заключение.

Как видите, при правильном подходе, почти любой БП АТХ можно переделать в то, что вам нужно. Если будут новые модели БП и нужда в зарядках, то возможно будет и продолжение.


Появилась необходимость зарядить аккумулятор авто. Можно взять ЛБП, но его использую в мастерской. Решил собрать зарядное устройство для гаража.

Обдумываю идею

Продумывая конструкцию, решил остановиться на переделке БП компьютера. Изучив информацию из интернета, задача довольно простая. Нашелся в наличии блок питания на интересной микросхеме 2003 . Она в себе совмещает ШИМ и контроль отклонения основных выходных напряжений блока. Такой вот модели блок. Скорей всего бывают и другие, но у меня именно этот.


Открываю и чищу от пыли. Блок питания должен быть рабочим.


Вот крупным планом микросхема. Информации о ней очень мало. Поиски замкнулись на схеме самого БП и все практически понятно.

Схема компьютерного блока

Схема имеет такой первоначальный вид. Хоть и на схеме указано 300 ватт, мой блок собран так же, разница видимо в некоторых компонентах.

Переделка блока в зарядник своими руками

Нужно удалить элементы отмеченные красным. Резистор желтого цвета, меняем на 2.4 кОм. Отмеченный голубым, нужно заменить на подстроечный резистор. Так же отпаял радиатор с диодами, без него удобно искать компоненты для удаления. Отмеченные напряжения зеленым цветом, будут распаяны на плату обхода ошибок.


На фото отлично видно удаленные детали. Так же пока удалил конденсатор С27 и резистор R53. Запаяю резистор обратно позже, он нужен для бесперебойной работы зарядки. PS-ON проводом подпаял на минус, для запуска блока.


На линию 12 вольт установил дополнительный дроссель, снял его с 5-ти вольтовой линии. Сдвоенный диод применил с линии 5 вольт.


Дроссель групповой стабилизации освободил от лишних обмоток. Сечения провода, для моих целей, достаточно.


Для обхода контроля отклонения основных напряжений, я сделал отдельную плату. Плату сделал на такой себе макетке. Питаться плата будет от 17 вольт дежурки. Понижать напряжение буду с помощью LM317, собран стабилизатор на 12 вольт. От 12 вольт будут питаться стабилизаторы на TL431. Собрал два стабилизатора, на 5 и 3.3 вольта. Пропущенный резистор на средней схеме 130 Ом.


Такая вот плата получилась. Собрал за полчаса.


Распаиваю провода соответственно нашей схемы. Синий и белый провода, это провода с подстроечного резистора. При включении им настраиваю на выходе 14.3 вольт.


Замеряю, сопротивление резистора, получилось около 12 кОм. Впаиваю сборный резистор из двух.


Выходные провода взял первые попавшиеся, только припаял к ним «крокодилы».


Сетевой провод размыкаю советским выключателем ТВ2-1.


Плату БП прикручиваю на штатные отверстия. Плату «обманку» прикрутил к радиатору. На выход установил сдвоенный диод, простенькая защита от переполюсовки. Нужно быть внимательными, защита от КЗ отсутствует, соберу позже. Подпаиваю выходные провода. Вентилятор подключил к плате «обманке», на 12 вольт. Индикаторный светодиод припаял на выход зарядки.


Забыл упомянуть. Пока дорабатывал плату БП, затерялся корпус, в котором была первоначально плата. Подобрал подобный ящичек. Благо их у меня в достатке.


Светодиод закрепил термоклеем.


Переднюю панель, изготовил из плексигласа. К панели прикручиваю тумблер, вывожу выходные провода и устанавливаю светодиод. Панель прикрутил винтами. Одеваем, и прикручивает крышку.

Итог

Такое вот зарядное устройство у меня получилось. Для гаража самое то, что нужно. Если не разряжать аккумулятор до предела, ток примерно составляет 5 Ампер. По мере заряда, ток падает.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.