Как строилась жигулевская гэс. Принцип работы гидроэлектростанции Сколько вырабатывает гэс

нижегородская гидроэлектростанция

Гидроэлектростамнция (ГЭС) -- электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища (Приложение 1 и 2).

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией -- естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • · мощные -- вырабатывают от 25 МВТ до 250 МВт и выше;
  • · средние -- до 25 МВт;
  • · малые гидроэлектростанции -- до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • · высоконапорные -- более 60 м;
  • · средненапорные -- от 25 м;
  • · низконапорные -- от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных -- ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных -- поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож -- вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины различаются некоторыми техническими характеристиками, а также камерами -- железными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • · русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • · плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • · деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние -- спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида -- безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище -- такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.(Приложение 3)
  • · гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Отличительные особенности ГЭС от других видов электростанций:

  • · Себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • · Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии
  • · Возобновляемый источник энергии
  • · Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций
  • · Строительство ГЭС обычно более капиталоёмкое
  • · Часто эффективные ГЭС более удалены от потребителей
  • · Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • · Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Многообразие вариантов и уникальность технических решений применяемых при строительстве гидроэлектростанций поражает воображение. На самом деле, не так легко найти две одинаковые станции. Но всё же существует их классификация, основанная на определённых признаках - критериях.

Способ создания напора

Пожалуй, самый очевидный критерий - способ создания напора :

  • русловая гидроэлектростанция (ГЭС);
  • деривационная гидроэлектростанция;
  • гидроаккумулирующая электростанция (ГАЭС);
  • приливная электростанция (ПЭС).

Между этими четырьмя основными видами гидроэлектростанций есть характерные отличия. Речная гидроэлектростанция располагается на реке, перекрывая плотиной её течение для создания напора и водохранилища. Деривационная ГЭС обычно располагается на извилистых горных реках, где можно соединить рукава реки водоводом чтобы пустить часть потока по более короткому пути. Напор при этом создаётся естественным перепадом рельефа местности, а водохранилище может и вовсе отсутствовать. Гидроаккумулирующая электростанция представляет собой два бассейна, располагающихся на разных уровнях. Бассейны соединены водоводами, по которым вода может перетекать в нижний бассейна из верхнего и перекачиваться обратно. Приливная электростанция располагается в заливе, перекрытом плотиной для создания водохранилища. В отличии от гидроаккумулирующей электростанции рабочий цикл ПЭС зависит от явления приливов/отливов.

Величина напора

По величине напора, создаваемого гидротехническим сооружением (ГТС) гидроэлектростанции делятся на 4 группы:

  • низконапорные - до 20 м;
  • средненапорные - от 20 до 70 м;
  • высоконапорные - от 70 до 200 м;
  • сверхвысоконапорные - от 200 м.

Стоить отметить что классификация по величине напора носит относительный характер и разнится от одного источника к другому.

Установленная мощность

По установленной мощности станции - сумме номинальных мощностей генерирующего оборудования установленного на ней. Эта классификация имеет 3 группы:

  • микро-ГЭС - от 5 кВт до 1 МВт;
  • малые ГЭС - от 1 кВт до 10 МВт;
  • крупные ГЭС - свыше 10 МВт.

Классификация по установленной мощности также как и по величине напора, не является строгой. Одну и ту же станцию в разных источниках могут относить к разным группам.

Конструкция плотины

Существует 4 основных группы плотин гидроэлектростанций:

  • гравитационная;
  • контрфорсная;
  • арочная;
  • арочно-гравитационная.

Гравитационная плотина представляет собой массивную конструкцию удерживающую воду в водохранилище за счёт своего веса. Контрфорсная плотина использует несколько другой механизм – свой относительно небольшой вес она компенсирует весом воды, давящей на наклонную грань плотины со стороны верхнего бьефа. Арочная плотина , пожалуй самая изящная, имеет форму арки, упирающейся основанием в берега и округлой частью выпуклой в сторону водохранилища. Удержание воды у арочной плотины происходит за счёт перераспределения давления с фронта плотины на берега реки.

Расположение машинного зала

Точнее, по расположению машинного зала относительно плотины , не путать с компоновкой! Эта классификация имеет значение только для русловых, деривационных и приливных электростанций.

  • руслового типа;
  • приплотинного типа.

При русловом типе машинный зал располагается непосредственно в теле плотины, приплотинной типе - возводится отдельно от тела плотины и обычно располагается сразу за ним.

Компоновка

Под словом "компоновка" в данном контексте подразумевается расположение машинного зала относительно русла реки. Будьте внимательны при чтении другой литературы на эту тему, потому как слово компоновка имеет более широкое значение. Классификация справедлива только для русловых и деривационных электростанций.

  • русловая;
  • пойменная;
  • береговая.

При русловой компоновке здание машинного зала располагается в русле реки, пойменной компоновке - в пойме реки, а при береговой компоновке - на берегу реки.

Зарегулированность

А именно степень зарегулированности стока реки. Классификация имеет значение только для русловых и деривационных гидроэлектростанций.

  • суточного регулирования (цикл работы - одни сутки);
  • недельного регулирования (цикл работы - одна неделя);
  • годичного регулирования (цикл работы - один год);
  • многолетнего регулирования (цикл работы - несколько лет).

Классификация отражает насколько велико водохранилище гидроэлектростанции по отношению к объему годового стока реки.

Все приведённые критерии не являются взаимно исключаемыми, то есть одна и та же ГЭС может быть речного типа, высоконапорной, средней мощности, русловой компоновки с машинным залом приплотинного типа, арочной плотиной и водохранилищем годичного регулирования.

Список использованных источников

  1. Брызгалов, В.И. Гидроэлектростанции: учеб. пособие / В.И. Брызгалов, Л.А. Гордон - Красноярск: ИПЦ КГТУ, 2002. - 541 с.
  2. Гидротехнические сооружения: в 2 т. / М.М. Гришин [и др.]. - Москва: Высшая школа, 1979. - Т.2 - 336 с.
Опубликовано: 21 июля 2016 Просмотров: 4.5k

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию . Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках , сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Красноярская ГЭС

  • ГЭС (Плотина Гувера в Неваде)

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор . Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод , посредством которого вода , находящаяся под давлением , подводится ниже уровня дамбы или к водозаборному узлу ГЭС .

Необходимый напор воды образуется посредством строительства плотины , и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 25 МВТ и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Как же такое устройство обеспечивает преобразование энергии воды в электроэнергию? В камере происходит взрыв определенного количества вещества. Взрывная волна жидкости проходит по стволу и попадает в цилиндр. Вследствие этого происходит вращение лопастей турбины, что, в свою очередь, является причиной работы гидрогенератора.

По мнению разработчиков проекта, самым важным условием для обеспечения эффективности изобретения является правильный расчёт веса взрывной волны, необходимого для производства волны, а не всплеска. Кроме того, должна быть точно рассчитана периодичность взрывов, что позволит избежать перерывов в действии устройства и не снижать скорость вращения лопастей. На стадии разработки находятся и другие варианты подобных установок.

Гидроаккумулирующие электростанции

Знак у Киевской ГАЭС

В период малых нагрузок гидроагрегаты станции заняты перекачкой воды из низового водоёма в верховой. Во время повышенной нагрузки происходит использование запасённой воды для выработки пиковой энергии. Обратимые гидроагрегаты обеспечивают работу турбинных и насосных режимов и представляют собой соединение синхронной электрической машины и гидравлической насос-турбины.

Энергия, которая тратится на перекачку, вырабатывается ТЭС во время пониженной загрузки, когда её стоимость не слишком высока. То есть, дешёвая ночная электроэнергия преобразовывается в дорогую. Экономическая эффективность, как можно убедиться, довольно высока. Несомненным преимуществом данного типа гидростанций является наличие высокого напора. Это позволяет устанавливать более эффективные аккумуляторы . Встречаются и станции смешанного типа. Часть установленных там гидроагрегатов способна работать в двух режимах: турбинном и насосном. Другая часть работает только в турбинном режиме. Использование таких станций позволяет накапливать большее количество воды и вследствие этого производить больше электроэнергии в периоды повышенной нагрузки.

Приливные электростанции

Приливная электростанция

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров.

На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии .

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Водяная мельница

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Водяная турбина

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин . Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины . Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока . Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

ГЭС Гувера США

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Усть-Каменогорская ГЭС

К началу двадцатого века развитие российской гидроэнергетики было весьма замедленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тысяч гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тысяч установок были оборудованы гидротурбинами .

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов киловатт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

Уже 13 июня 1918 года было принято решение о начале строительства Волховской гидроэлектростанции, которая стала первым проектом советской гидроэнергетики, а её мощность равнялась 58 МВт. Уже в первые годы советской власти был разработан план электрификации страны (ГОЭЛРО), который был утверждён 22 декабря 1920 года. Одна из глав плана называлась «Электрификация и водная энергия». В ней отмечалось, что использование гидроэлектростанций может представлять выгоду в случае комплексного использования.

План предусматривал сооружение ГЭС общей мощностью в 21254 тысяч лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тысяч лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках .

Это позволило превратитить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони). Развивается гидроэнергетическая отрасль и в России. Сегодня на территории Российской Федерации функционируют сто две гидроэлектростанции.

Суммарная мощность всех работающих российских гидроагрегатов – сорок пять миллионов киловатт (это пятое место в мире). При этом доля гидроэлектростанций в общем объёме получаемой российской энергии составляет двадцать один процент. А это не так уж и много, особенно, учитывая то, что Россия находится на втором месте по экономическому потенциалу гидроресурсов (около 852 миллиардов киловатт в час). Но освоены эти ресурсы лишь на двадцать процентов.

Перспективы гидроэнергетики

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

Потенциал мировой гидроэнергетики

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков , ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10 000 – 20 000 миллиардов киловатт в час (приведены данные ООН).

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вместе с тем, не теряет актуальность вопрос: какую долю этого природного богатства человечество может позволить себе использовать? Для ответа на этот вопрос необходимо представлять возможные последствия работы гидроэлектростанций для окружающей среды.

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.

Экологические аспекты использования гидроэнергетики

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

. Вы можете помочь проекту, исправив и дополнив её.

Определение

Особенности

Принцип работы

Гидроэнергетика в мире

Крупнейшие ГЭС в мире

Тукуруи ГЭС

Гранд-Кули

Саяно-Шушенская ГЭС

Красноярская ГЭС

Черчилл-Фолс (ГЭС)

Плотина Гувера

Асуанские плотины

Гидроэлектростанции (ГЭС) Российской Федерации

Предыстория развития гидростроения в Российской Федерации

Крупнейшие гидроэлектростанции (ГЭС) Российской Федерации

Братская ГЭС

Усть-Илимская ГЭС

Богучанская ГЭС

Волжская ГЭС

Жигулёвская ГЭС

Бурейская ГЭС

Аварии и происшествия на ГЭС

Плотина Вайонт

Новосибирская ГЭС

Аварии на Саяно-Шушенской ГЭС

Малая гидроэлектростанция (ГЭС)

Гидроэлектроста́нция (ГЭС ) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции (ГЭС) обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электричества на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.








Особенности

Исходная стоимость электричества на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии

Возобновляемый источник энергии

Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций

Строительство ГЭС обычно более капиталоёмкое

Часто эффективные ГЭС более удалены от потребителей

Водохранилища часто занимают значительные территории

Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию .

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции (ГЭС) располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля за работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ до 250 МВт и выше;

средние — до 25 МВт;

малые гидроэлектростанции (ГЭС) — до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции (ГЭС).

Гидроэлектростанции (ГЭС) также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м;

средненапорные — от 25 м;

низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях (ГЭС) применяются различные виды турбин. Для высоконапорных — ковшовые и радиально осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины различаются некоторыми техническими характеристиками, а также камерами — железными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции (ГЭС) строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

деривационные гидроэлектростанции (ГЭС). Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные, или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы . Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электричества значительно ниже, чем при использовании других видов электростанций.

Гидроэнергетика в мире

Лидерами по выработке гидроэнергии на гражданина являются , и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт , для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций (ГЭС) мира.

Крупнейшие ГЭС в мире

На 2005 год гидроэнергетика обеспечивает производство до 63 % возобновимой и до 19 % всей электричества в мире, установленная гидроэнергетическая мощность достигает 715 ГВт.

Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало XXI века ведёт Китай , для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций (ГЭС) мира.

Итайпу

Итайпу́» — крупная ГЭС на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая.



Работы по проектированию и подготовке начаты в 1971 году, последние два из запланированных 18 генераторов введены в строй в 1991 году, дополнительные два генератора введены в 2007 году.

Состав сооружений ГЭС:

Комбинированная плотина общей длиной 7 235 м, шириной 400 м и высотой 196 м;

Бетонный водосброс с максимальным потоком в 62 200 мі/с.

Мощность станции — 14 000 МВт. Среднегодовая выработка — 69,5 млрд кВт·ч, после завершения строительства в 2007 году — 90-95 млрд кВт·ч в год.

Силовое оборудование станции состоит из 20 гидроагрегатов мощностью по 700 МВт, в силу превышения расчётного напора доступная для генераторов мощность достигает 750 МВт в течение более чем половины времени работы.

Плотина гидроэлектростанции (ГЭС) образовала относительно небольшое — по отношению к мощности — водохранилище длиной 170 км, шириной от 7 до 12 км, площадью 1 350 кмІ и объёмом 29 кмі.

Для её строительства правительством было переселено около 10 тысяч живших на берегу Параны семей, многие из которых присоединились к Движению безземельных.

Стоимость сооружения «Итайпу» экспертами первоначально оценивалась в 4,4 млрд. долл., но из-за неэффективной политики сменявших друг друга диктаторских режимов реально составила 15,3 млрд. долл.

Гури

«Гу́ри» — крупная ГЭС в республике Венесуэле в департаменте Боливар на реке Карони в 100 км до впадения в Ориноко.

Официальное название — гидроэлектростанция (ГЭС) имени Симона Боливара (в 1978—2000 годах — имени Рауля Леони).

Третья станция в мире по мощности после китайской «Санься» и бразильской «Итайпу».


Сооружение ГЭС началось в 1963 году, первая очередь завершена в 1978, вторая в 1986 году.

Состав сооружений ГЭС:

плотина общей длиной 1300 м и 162 м высотой;

два машинных зала с 10 гидрагрегатами в каждом;

бетонный водосброс максимальной пропускной способностью 25 500 мі/с.

Мощность станции — 10 300 МВт. В первом машинном зале установлено 10 агрегатов мощностью по 400 МВт, во втором — 10 агрегатов мощностью по 630 МВт. Максимальная годовая выработка — 46 млрд кВт·ч. Напорные сооружения ГЭС (полная длина достигает 7 000 м) образуют крупное водохранилище Гури протяжённостью 175 км, шириной 48 км, площадью до 4 250 кмІ и полным объёмом 138 кмі. Урез вод водохранилища находится на высоте 272 м над уровнем моря.

С 2000 года ведётся реконструкция: до 2007 года заменены 5 турбин и основные компоненты второго машинного зала, с 2007 года ведётся замена четырёх агрегатов в первом зале.

Стены второго машинного зала украшены венесуэльским художником Карлос Круз-Диез.

Тукуруи ГЭС

Тукуруйская ГЭС (Guarani, португ.: Tucuruн, Usina Hidrelйtrica de Tucuruн) — гидроэлектростанция (ГЭС) на реке Токантинс, расположенная в графстве Тукуруи, Токантинс, .

ГЭС названа по имени города «Тукуруи», существовавшего около строительной площадки. Сейчас город с тем же именем существует ниже по течению реки от дамбы. Установленная мощность гидроэлектростанции (ГЭС) 8,370 МВт, всего размещено 24 генератора.



В 1970 году был сформирован из бразильской компаний ENGEVIX и THEMAG, который выиграл международный на разработку и реализацию проекта. Работы начались в 1976 году и завершены в 1984. Длина плотины составила 11 км, высота 76 м. Водосброс разработан лабораторией Francisco Rodrigues Saturnino de Brito (Рио-де-Жанейро) и обладает наибольшей в мире пропускной способностью 120,000 мі/с.

ГЭС фигурировала в фильме 1985 года «Изумрудный лес (The Emerald Forest)».

Гранд-Кули

Гранд-Кули — гидроэлектростанция (ГЭС), расположенная в Северной Америке, самая крупная в США и пятая по мощности в мире.

Строительство ГЭС завершено в июне 1942 года. Водохранилище объемом 11,9 кмі сооружено в целях производства электричества и орошения пустынных районов на северо-западном побережье. Водами водохранилища орошается около 2000 кмІ сельскохозяйственных площадей.

Бетонная гравитационная плотина ГЭС, в тело которой было уложено 9,16 млн мі бетона, имеет длину 1592 м и высоту 168 м. Ширина водосливной части плотины — 503 м. В четырех машинных залах ГЭС установлено в совокупности 33 турбины общей мощностью 6809 МВт, которые ежегодно вырабатывают 20 ТВч·ч электричества.




Саяно-Шушенская ГЭС

Сая́но-Шу́шенская гидроэлектроста́нция им. П. С. Непорожнего — самая мощная электростанция Российской Федерации, шестая по мощности гидроэлектростанция (ГЭС) в мире. Расположена на реке Енисей, в посёлке Черёмушки (Хакасия), возле Саяногорска.



Является самой мощной электростанцией в Российской Федерации. До аварии 2009 года производила 15 процентов энергии, вырабатываемой на российских гидроэлектростанциях (ГЭС) и 2 процента общего объёма электричества. Состав сооружений ГЭС:

бетонная арочно-гравитационная плотина высотой 245 м, длиной 1 066 м, шириной в основании — 110 м, шириной по гребню 25 м. Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую часть длиной 298,5 м.

приплотинное здание ГЭС

строящийся береговой водосброс.

Мощность ГЭС — 6 400 МВт (вместе с Майнским гидроузлом — 6 721 МВт), среднегодовая выработка 24,5 млрд кВт·ч. В 2006 году из-за крупного летнего паводка электростанция выработала 26,8 млрд. кВт·ч электричества.

В здании ГЭС было размещено 10 радиально-осевых гидроагрегатов мощностью по 640 МВт, работавших при расчётном напоре 194 м. Максимальный статический напор на плотину — 220 м. Плотина ГЭС уникальна, аналогичный тип плотины в Российской Федерации имеет ещё только одна ГЭС — Гергебильская, но она значительно меньше.

Пропускная способность водосброса плотины — 13600 мі/сек, максимальный зарегистрированный приток к створу — 24400 мі/сек, строящийся водосброс должен увеличить наибольший сбрасываемый затрата на 8000 мі/сек.

Ниже Саяно-Шушенской ГЭС расположен её контррегулятор — Майнская ГЭС мощностью 321 МВт, организационно входящая в состав Саяно-Шушенского гидроэнергетического комплекса.

Плотина ГЭС образует крупное Саяно-Шушенское водохранилище полным объёмом 31,34 куб. км (полезный объём — 15,34 куб. км) и площадью 621 кв. км. Вода водохранилища отличается высоким качеством, что позволило организовать в нижнем бьефе ГЭС рыбоводные хозяйства, специализирующиеся на выращивании форели. При создании водохранилища было затоплено 35,6 тыс. га сельхозугодий и перенесено 2717 строений. В районе водохранилища расположен Саяно-Шушенский биосферный заповедник.

Саяно-Шушенская ГЭС спроектирована институтом Ленгидропроект.




Красноярская ГЭС

Красноя́рская гидроэлектроста́нция — на реке Енисей, в сорока километрах от Красноярска, вблизи города Дивногорска Красноярского края. Вторая по мощности ГЭС в Российской Федерации. Входит в Енисейский каскад ГЭС.

Красноярская ГЭС спроектирована институтом Ленгидропроект.

Строительство ГЭС началось в 1956 году, закончилось в 1972 году. Первый блок Красноярской ГЭС был пущен 3 ноября 1967 года.

Состав сооружений ГЭС:

гравитационная бетонная плотина длиной 1 065 м и высотой 124 м, состоит из левобережной глухой плотины длиной 187,5 м, водосливной — 225 м, глухой русловой — 60 м, станционной — 360 м и правобережной глухой — 232,5 м. Всего при строительстве тела плотины было уложено 5,7 млн. м3 бетона.

приплотинное здание ГЭС длиной 430 м.

Установки приёма и распределения электричества — 220 кВ и 500 кВ.

Судоподъёмник.

Мощность ГЭС — 6000 МВт. Среднегодовая выработка электричества — 20,4 млрд кВт·ч. В здании ГЭС устM3овлено 12 радиально-осевых гидроагрегатов мощностью по 500 МВт, работающих при расчётном напоре 93 м. Для пропуска судов сооружён единственный в Российской Федерации судоподъёмник.

Плотина ГЭС образует крупное Красноярское водохранилище. Площадь водохранилища около 2000 кмІ, полный и полезный объём 73,3 и 30,4 кмі соответственно. Водохранилищем было затоплено 120 тыс. га сельскохозяйственных земель, в ходе строительства было перенесено 13750 строений.



Черчилл-Фолс (ГЭС)

Че́рчилл-Фолс — деривационная ГЭС на реке Черчилл в провинции Канады Ньюфаундленд и Лабрадор, должна стать частью проектируемого каскада ГЭС на реке. Гидроэлектростанция (ГЭС) сооружена на месте водопада Черчилл высотой 75 м, который после отвода реки в 1970 осушен, то есть не существует как водопад большее время года. Река, водопад и ГЭС названы в честь британского премьер-министра У. Черчилля.

На 2009 ГЭС Черчилл-Фолс имеет второй по величине подземный машинный зал в мире после ГЭС Робер-Бурасса в северном Квебеке, является первой в Северной Америке гидроэлектростанцией (ГЭС) по среднегодовой выработке (35 ТВт·ч) и второй в Канаде по установленной мощности (5 428 МВт).

Cооружение гидроэлектростанции (ГЭС) было начато 17 июля 1967 после нескольких лет планирования, завершено 6 декабря 1971. Водохранилище — общей площадью 6 988 км2 и объемом 28 км3 — сформировано не одной дамбой, а 88 деривационными дамбами общей длиной более 64 км, при сооружении которых было использовано 20 млн. м3 грунта. Самая длинная из дамб имеет длину 6,1 км. Данная схема позволила увеличить площадь водосбора с 60 000 км2 до 71 700 км2 и довести среднегодовой сток в районе гидроузла до 52 км3 (1 651 мі/с).

Гидроэлектростанция (ГЭС) выполнена по деривационному принципу с отводом реки в районе водопада. Снабжена водосбросом с пропускной способностью 1 390 м3/сек. МашM3 ный зал ГЭС, по проекту подземный, выполнен в скальной выработке на глубине 310 м. Размеры машинного зала составляют 296 м в длину, 25 м в ширину и 47 м в высоту. Всего в нем установлено 11 гидроагрегатов с общей мощностью 5 428 МВт. Каждая из радиально-осевых турбин, работающих при расчётном напоре 312,4 м, имеет массу 73 т и рабочую частоту 200 об/мин. Мощность генераM3 ров 493,5 МВ. Водоводы агрегатов выполнены в виде подводящих туннелей длиной 427 м и диаметром 6,1 м и водосбросных шахт к генераторам высотой 263 м и диаметром 2,13 м.

Станция принадлежит «Churchill Falls (Labrador) corporation Ltd», контрольный пакет (65,8%) акций которой принадлежит «Nalcor», 34,2% принадлежит «Hydro-Quйbec». Существует проект развития станции, который включает в себя строительство новых дамб и дополнительных гидроэлектростанций (ГЭС), что должно обеспечить увеличение площади вобосбора и довести общую установленную мощность до 9 252 МВт.

Плотина Гувера

Плоти́на Гу́вера, дамба Гувера, дамба Хувера (англ. Hoover Dam, также известна как Boulder Dam) — уникальное гидротехническое сооружение в США , бетонная плотина высотой 221 м и гидроэлектростанция (ГЭС), сооружённая в нижнем течении реки Колорадо. Расположена в Чёрном каньоне, на границе штатов Аризона и Невада, в 48 км к юго-востоку от Лас-Вегаса; образует озеро (водохранилище) Мид. Названа в честь 31-ого президента США Герберта Гувера, 31-го президента США , сыгравшего важную роль в её строительстве. Строительство дамбы началось в 1931 и закончилось в 1936, на два года раньше запланированного срока.

Плотина находится под управлением Бюро мелиорации США, подразделения Департамента внутренних дел США. В 1981 плотина была включена в Национальный регистр исторических мест США. Плотина Гувера является одной из известнейших достопримечательностей в окрестности Лас-Вегаса.

Гидроэлектростанция (Hydro power plant, ГЭС) - это

До возведения плотины река Колорадо нередко показывала свой бурный нрав, зачастую во время таяния снегов в Скалистых горах затопляя фермерские угодья, лежащие ниже по течению. Проектировщики плотины планировали, что её возведение поможет сгладить колебания уровня реки. Помимо этого, ожидалось, что водохранилище даст толчок развитию орошаемого земледелия, а также станет источником водоснабжения Лос-Анджелеса и других районов Южной Калифорнии.

В то же время, одним из препятствий для осуществления проекта стали сомнения штатов, лежащих в бассейне реки Колорадо, в справедливом распределении водных ресурсов между потребителями. Существовали опасения, что Калифорния, с её влиянием, финансовыми ресурсами и недостатком воды предъявит права на большую часть водных ресурсов водохранилища.

В итоге в 1922 была создана комиссия, включавшая по одному представителю от каждого из заинтересованных штатов и одного — от федерального правительства (им стал 31-й президент США Герберт Гувер , в то время министр торговли в правительстве президента Уоррена Гардинга). Результатом деятельности этой комиссии стала подписанная 24 ноября 1922 конвенция реки Колорадо, в которой были закреплены методики раздела водных ресурсов. Подписание этого документа, получившего название «Компромисс Гувера», открыло путь к осуществлению строительства плотины.

Постройка такого масштабного гидротехнического сооружения требовала привлечения значительных средств из госбюджета. Законопроект о выделении финансирования не сразу получил одобрение палаты американского конгресса и резиденции президента США (White House). Лишь 21 декабря 1928 президент подписал билль, одобряющий осуществление проекта. Первоначальные ассигнования же на постройку плотины были выделены только в июле 1930, когда президентом был уже Герберт Кларк Гувер .

Первоначальный план предусматривал возведение плотины в каньоне Боулдер (англ. Boulder Canyon). Поэтому, несмотря на то, что окончательно было решено строить плотину в Чёрном каньоне, проект получил название Boulder Canyon Project.

Подряд на строительство плотины был получен консорциумом Six Companies, Inc., совместным предприятием компаний Morrison-Knudsen Company (Бойсе, штат Айдахо); Utah Construction Company (Огден, штат Юта); Pacific Bridge Company (Портленд, Орегон); Henry J. Kaiser & W. A. Bechtel Company (Окленд, штат Калифорния); MacDonald & Kahn Ltd. (Лос-Анджелес) и J. F. Shea Company (Портленд, штат Орегон).

Планировалось, что для строителей рядом с плотиной будет возведён целый городок — Боулдер-Сити, однако график строительства был скорректирован в пользу ускорения и увеличения количества рабочих мест (это было сделано для снижения массовой безработицы, ставшей результатом Великой депрессии). В связи с этим в момент появления первых рабочих город был ещё не готов, и первое лето строители дамбы провели во временных лагерях. Задержка со сдачей жилья и опасные условия работы повлекли за собой забастовку, состоявшуюся 8 августа 1931. Выступление рабочих было разогнано оружием и дубинками, но темпы строительства Боулдер-сити были увеличены, и к весне 1932 рабочие переселились в постоянные жилища.

Строительство плотины велось в тяжелых условиях. Часть работ проводилась в тоннелях, где рабочие страдали от избытка угарного газа (некоторые работники стали инвалидами или даже погибли вследствие этого). Работодатель же объявил, что данные заболевания — последствия обычной пневмонии, и он не несёт ответственность за это.

Разработка котлована для сооружений гидроэлектростанции (ГЭС) была проведена одновременно с рытьём котлована для основания плотины. Земляные работы для «U»-образного сооружения, лежащего у подножия плотины, были закончены в конце 1933, а первый бетон в здание электростанции залит в ноябре этого года.





Малая гидроэлектростанция (ГЭС)

Малая гидроэлектростанция (ГЭС) или малая ГЭС (МГЭС) — гидроэлектростанция (ГЭС), вырабатываемая сравнительно малое количество электричества. Общепринятого для всех стран понятия малой гидроэлектростанции (ГЭС) нет, в качестве основной характеристики таких ГЭС принята их установленная мощность. Чаще к малым гидроэлектростанциям (ГЭС) относят гидроэнергетические установки, установленная мощность которых не превышает 5 МВт (Австрия, Польша, граница был увеличена до 15 МВт, а в 1980 их максимальная установленная мощность была ограничена 30 МВт. В СССР согласно СНиП 2.06.01-86 к малым относились ГЭС, установленной мощностью к 30 МВт при диаметре рабочего колеса турбины до 3 м. Среди малых ГЭС условно выделяют микро-ГЭС, установлення мощность которых не превышает 0,1 МВт.

В Белоруссии, согласно Постановлению СМ РБ от 24 апреля 1997 № 400 «О развитии малой и нетрадиционной энергетики», малыми электростанциями считаются электростанции с установленной мощностью до 6 МВт. «Белэнерго» должен рассчитываться с малыми электростанциями за поставленную электроэнергию по удвоенным тарифам. Аналогичные льготы действуют и в Латвии, исходя с «закона об энергетике» от 3 сентября 1998 г., гарантирует закупку электричества от малых ГЭС по двойному тарифу в течение 8 лет после ввода в эксплуатацию. В Швеции действует 1350 малых ГЭС, которые вырабатывают 10 % необходимой стране электричества, в Китае действует около 83 тысяч малых ГЭС. В Белоруссии до создания единой Белорусской энергетической системы существовало 179 малых ГЭС, которые обеспечивали электричеством сельское хозяйство, после — большинство с их было заброшено, а сейчас делаются попытки воссоздать их.

В Российской Федерации ОАО «ГидроОГК» считает малыми гидроэлектростанции (ГЭС) мощностью менее 25 МВт. Строительство данных станций выделено кампанией в специальную программу, оператором которой выступает дочерняя компания предприятия — фонд «Новая энергия». Согласно программе, до 2010 года намечено ввести не менее 150 МВт мощности на малых ГЭС, а к 2020 году — не менее 1000 МВт.

Источники

http://ru.wikipedia.org/


Энциклопедия инвестора . 2013 . Справочник технического переводчика

ГИДРОЭЛЕКТРОСТАНЦИЯ - (ГЭС) электростанция, преобразующая механическую энергию потока воды в электрическую энергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Мощность крупнейших гидроэлектростанций до нескольких ГВт (напр.,… … Большой Энциклопедический словарь

ГИДРОЭЛЕКТРОСТАНЦИЯ - ГИДРОЭЛЕКТРОСТАНЦИЯ, комплекс сооружений, использующий дамбы или приливные волны для преобразования энергии движения воды в электрическую. Почти во всех схемах кинетическая энергия воды приводит во вращение лопатки водяной ТУРБИНЫ, которая в свою … Научно-технический энциклопедический словарь

  • - 31. Гидроэлектростанция ГЭС D. Wasserkraftwerk E. Hydroelectric power plant F. Centrale hydro électrique Электростанция, преобразующая механическую энергию воды в электрическую энергию
  • Гидроэлектростанции входят в состав гидроузлов. Гидроузел – комплекс гидротехнических сооружений, обеспечивающих использование водных ресурсов для получения электрической энергии, водоснабжения, орошения, а также защиту от наводнений, улучшение условий судоходства, рыбоводства, рекреации и др.

    Состав и назначение сооружений ГЭС. Если основной задачей создания гидроузла является получение электроэнергии, то его обычно называют ГЭС или гидроэнергетическим объектом. В комплексе сооружений гидроузла выделяют основные и вспомогательные сооружения. Для обеспечения производства строительно-монтажных работ в период строительства возводят временные сооружения.

    Основные сооружения в зависимости от выполняемых функций подразделяют на:

    Водоподпорные и водосбросные сооружения, предназначенные в зависимости от схемы ГЭС для создания водохранилища, всего или части напора ГЭС, пропуска в нижний бьеф эксплуатационных расходов, в том числе паводковых (включающие плотины и водосбросы разных типов), а также для сброса льда, шуги, промыва наносов (включающие для этих целей в ряде случаев специальные устройства). На многоводных реках максимальные паводковые расходы могут достигать 100 тыс.м3 /с и более. Так, на самой крупной в мире ГЭС «Три ущелья» на р. Янцзы (Китай) сооружения гидроузла рассчитаны на пропуск при ФПУ максимального расчетного паводка 102,5 тыс.м3 /с, на Чебоксарской ГЭС на Волге максимальный расчетный расход обеспеченностью 0,01% составляет 48 тыс.м3 /с, на Днепрогэсе – 25,9 тыс.м3 /с.

    Энергетические сооружения, предназначенные для выработки электроэнергии и выдачи ее в энергосистему и включающие водоприемники; водоводы, подводящие воду из верхнего бьефа к гидротурбинам в здании ГЭС и отводящие воду от здания ГЭС в нижний бьеф; здания ГЭС с энергетическим оборудованием (гидротурбины, гидрогенераторы, трансформаторы и др.), механическим, подъемно-транспортным, вспомогательным оборудованием, системой управления; открытые (ОРУ) или закрытые (ЗРУ) распределительные устройства для приема и выдачи электроэнергии в энергосистему, а также аварийного отключения ЛЭП.

    Судоходные и лесосплавные сооружения, предназначенные для пропуска судов, плотов через гидроузел и включающие шлюзы, судоподъемники с подходными и отводящими каналами, плотоходы и др.

    Водозаборы для орошения, водоснабжения, обеспечивающие необходимую подачу воды и включающие водоприемники, насосные станции и др.

    Рыбопропускные и рыбозащитные сооружения, предназначенные для пропуска проходных пород рыбы к нерестилищам в верхнем бьефе и в обратном направлении и включающие рыбоходы и рыбоподъемники.

    Транспортные сооружения, предназначенные для связи сооружений гидроузла между собой, а также для пропуска через них автомобильных и железных дорог и включающие мосты, шоссейные и железные дороги и др.

    В зависимости от природных условий участка размещения гидроузла (гидрологических, топографических, геологических, климатических), схемы создания напора, типа ГЭС часть основных сооружений гидроузла может быть совмещена друг с другом (например, водосливные здания ГЭС, где здание ГЭС совмещено с водосбросом).

    Вспомогательные сооружения предназначены для обеспечения необходимых условий нормальной эксплуатации гидроузла и работы обслуживающего персонала и включают административно-бытовые здания, системы водоснабжения, канализации и др.

    Временные сооружения, необходимые для производства строительно-монтажных работ, можно разбить на две группы.

    К первой группе относятся сооружения, обеспечивающие пропуск расходов реки во время строительства в обход котлованов и строящихся сооружений и защиту их от затопления и включающие строительные каналы, водоводы, туннели, перемычки, системы водопонижения и др.

    Ко второй группе относятся подсобные производственные предприятия, включающие бетонные заводы со складами цемента, заполнителей для бетона, арматурные, деревообрабатывающие и механические цеха, базы механизации и автотранспорта, склады, временные дороги, системы временного электроснабжения, связи, водоснабжения и др.

    Во многих случаях часть временных сооружений после завершения строительства используют в период эксплуатации ГЭС. Так, из сооружений первой группы строительные каналы и туннели могут входить полностью или частично в состав водосбросов или водоводов ГЭС, а перемычки в состав плотин.

    Сооружения второй группы полностью или частично могут использоваться как начальная инфраструктура территориальнопроизводственных комплексов, базирующихся на ГЭС.

    Для обеспечения надежной и долговечной работы ГЭС в эксплуатационных условиях с учетом комплексного использования, достижения максимального экономического эффекта за счет снижения стоимости, сокращения сроков строительства и ускорения ввода в действие гидроагрегатов важное значение имеет выбор рациональной компоновки и типов сооружений, исходя из природных условий, параметров водохранилища и ГЭС, режимов эксплуатации.

    Учитывая длительные сроки строительства крупных ГЭС, достигающие 5–10 лет, обычно предусматривается возведение сооружений и ввод гидроагрегатов в эксплуатацию очередями при недостроенных сооружениях, пониженных напорах, благодаря чему повышается экономическая эффективность.

    ГЭС и ГАЭС подразделяют:

    По способу создания напора, исходя из принципиальных схем использования гидравлической энергии на ГЭС, размещения здания ГЭС в составе сооружений: ГЭС с русловыми зданиями; ГЭС с приплотинными зданиями; деривационные ГЭС.

    По установленной мощности (для ГАЭС по мощности в генераторном режиме) на: мощные – более 1000 МВт, средней мощности от 30 до 1000 МВт, малой мощности – менее 30 МВт.

    По напору (максимальному): высоконапорные – более 300 м, средненапорные – от 30–50 до 300 м, низконапорные – менее 30–50 м.

    ГЭС с русловыми зданиями обычно применяются на равнинных реках на мягких и скальных основаниях при напорах до 50 м и характеризуются тем, что здания ГЭС входят в состав напорного фронта и воспринимают давление воды со стороны верхнего бьефа. В комплекс сооружений ГЭС обычно входят бетонные сооружения, включающие здание ГЭС, водосливную плотину и судоходный шлюз, и земляные плотины, образующие большую часть напорного фронта. Во многих случаях русловые здания ГЭС выполняются совмещенными с водосбросами. Применение совмещенных русловых зданий на Киевской, Каневской, Днестровской (Украина), Плявинской (Латвия), Саратовской (Россия) ГЭС и ряде других позволило отказаться от водосливных бетонных плотин, сократить фронт бетонных сооружений и получить значительную экономию. На выбор общей компоновки сооружений ГЭС с русловыми зданиями, применяемых на многоводных реках, где расчетные паводковые расходы в период строительства могут достигать 10–20 тыс.м3 /с, существенно влияет схема пропуска расходов реки в период строительства.

    В зависимости от расположения бетонных сооружений ГЭС различают следующие компоновки (рис. 4.1):

    Береговая и пойменная компоновка.

    Такие компоновки отличаются тем, что основные бетонные сооружения (здание ГЭС, водосливная плотина и др.) размещаются вне русла реки, их котлован ограждается перемычками, и в период их строительства пропуск строительных расходов, включая паводки, осуществляется по руслу реки. Когда бетонные сооружения возведены, русло перекрывается глухой плотиной, чаще всего земляной, и расходы реки пропускаются через бетонные сооружения. При береговой компоновке высота перемычек меньше, а при расположении котлована в пределах участка берега, не затапливаемого паводками строительного периода, вообще отпадает необходимость в устройстве перемычек. Существенным недостатком береговой компоновки является необходимость выполнения больших объемов земляных работ по выемке грунта в котловане, подводящем и отводящем каналах. При пойменной компоновке котлован бетонных сооружений размещается в пойме ближе к руслу, что приводит, с одной стороны, к увеличению высоты перемычек, ограждающих котлован, а, с другой, – к уменьшению объемов работ по выемке грунта.

    Русловая компоновка. При такой компоновке бетонные сооружения размещаются в русле реки. При этом применяются следующие схемы их возведения:

    В одном котловане, огражденном перемычками, с пропуском строительных расходов через выполненный в береге канал.

    В две (редко в три) очереди, когда часть русла отгораживается перемычками и в ней возводят бетонные сооружения 1-й очереди, а через другую часть русла пропускают строительные расходы. Когда сооружения 1-й очереди возведены, через них пропускаются расходы реки, а другая часть русла ограждается перемычками и возводятся бетонные сооружения 2-ой очереди.

    Смешанная компоновка. При такой компоновке бетонные сооружения размещаются частично в русле и на берегу (в пойме) или в русле на всей его ширине и частично на берегу (в пойме).

    Выбор варианта компоновки ГЭС в каждом конкретном случае определяется природными условиями участка расположения ГЭС, обеспечением благоприятных условий эксплуатации, сокращения сроков строительства, стоимости гидроузла и производится на основании технико-экономического сопоставления вариантов.

    В качестве примера на рис. 4.2 приведена компоновка Киевской ГЭС. В состав бетонных сооружений, расположенных на правом берегу, входят: русловое здание ГЭС с 20 горизонтальными капсульными гидроагрегатами суммарной установленной мощностью 360 МВт со среднегодовой выработкой 0,64 млрд. кВт·ч в год, совмещенное с поверхностными водосбросами, однокамерный шлюз. Земляная плотина, перекрывающая русло, и левобережная дамба имеют общую длину около 54 км. Максимальный напор ГЭС 11,8 м, расчетный – 7,6 м. Расчетный максимальный паводковый расход, пропускаемый через сооружения ГЭС, составляет 14,8 тыс.м3/с, а максимальный удельный расход на водобое равен 90 м3/с. В условиях песчаного основания для обеспечения надежной работы руслового здания ГЭС предусмотрены противофильтрационные мероприятия, включающие глинистый понур, шпунтовую завесу под фундаментной плитой здания ГЭС, за которой устроен дренаж, соединенный с нижним бьефом. Для недопущения опасных размывов дна при работе ГЭС и пропуске паводков в нижнем бьефе выполнено крепление, включающее водобой и рисберму из железобетонных плит толщиной от 2,5 до 1,5 м и ковша, заполненного каменной наброской, которая при образовании воронки размыва предотвратит дальнейший размыв.



    В комплекс сооружений входит Киевская ГАЭС, расположенная на берегу Киевского водохранилища в 3,5 км от ГЭС.

    ГЭС с приплотинными зданиями сооружаются на равнинных и горных реках, преимущественно на скальном основании при напорах от 30 до 300 м и характеризуются тем, что здание ГЭС размещается за плотиной.

    От типа, высоты и других параметров плотины, природных условий створа зависят длина напорных водоводов и компоновка здания ГЭС.

    В условиях равнинных рек компоновки ГЭС с приплотинными зданиями аналогичны компоновкам с русловыми зданиями и отличаются от них тем, что перед зданием находится бетонная плотина с водоприемником и напорными водоводами (станционная плотина), отделенная от здания ГЭС деформационным швом. Интересным примером такой компоновки является Днепрогэс (рис. 4.3).

    После строительства Кременчугской ГЭС с водохранилищем полезной емкостью 9 км3 , обеспечивающим сезонное регулирование стока Днепра, расчетный максимальный паводковый расход Днепрогэса в условиях зарегулированного стока снизился с 40 до 25,9 тыс.м3 /с, благодаря чему освободилась часть водосливных отверстий (пролетов) плотины, что позволило использовать их в качестве водоприемных отверстий второго здания ГЭС общей мощностью 888 МВт и увеличить общую мощность Днепрогэса до 1595 МВт. К каждой турбине вода подается из двух пролетов (водоприемных отверстий) по двум железобетонным напорным трубопроводам, опирающимся на плотину и отделенным деформационным швом от здания ГЭС.

    а

    б в

    Рис. 4.3. Днепрогэс: а – план; б, в – машинный зал соответственно ГЭС-1 и ГЭС-2; 1 – здание ГЭС-1; 2 – гравитационная плотина; 3 – здание ГЭС-2; 4 – шлюз

    При более высоких напорах обычно в условиях горных рек компоновки ГЭС с бетонными плотинами и плотинами из грунтовых материалов имеют особенности.

    Компоновки с бетонными плотинами, как правило, выполняются русловыми или смешанными с размещением здания ГЭС за гравитационной, контрфорсной или арочной плотинами и характеризуются расположением напорных водоводов в теле плотины, на ее верховой или низовой гранях (рис. 4.4). В состав гидроузла входят станционная плотина с приплотинным зданием ГЭС, водосбросная плотина и глухие плотины, которые могут быть бетонными и из грунтовых материалов.

    В узких створах возникают трудности с размещением здания ГЭС и водосброса. В этих случаях водосброс может быть выполнен отдельно на берегу (например Чиркейская ГЭС) или в виде поверхностного водосброса, расположенного на перекрытии приплотинного здания ГЭС (например Токтогульская ГЭС). Крайне редко машинный зал ГЭС располагают в теле плотины (например ГЭС Монтейнар во Франции, где машинный зал с четырьмя гидроагрегатами общей мощностью 320 МВт размещается в полости внутри арочно-гравитационной плотины высотой 153 м и длиной по гребню 210 м, а поверхностный водосброс на низовой грани плотины). Такие встроенные здания, размещаемые в полости внутри бетонной плотины (см. рис. 4.4,г), составляют отдельную группу и условно относятся к приплотинным зданиям.

    а б

    в
    г

    Рис. 4.4. Компоновки ГЭС с приплотинными зданиями и бетонными плотинами: а – русловая компоновка – ГЭС «Три ущелья»: 1– водосливная плотина; 2 – левобережная и правобережная станционные плотины и здания ГЭС; 3 – судоподъемник; 4 – двухниточный шлюз; б – смешанная компоновка – ГЭС Итайпу: 1 – левобережная плотина из грунтовых материалов; 2 – канал для пропуска строительных расходов; 3 – временный водосброс; 4 – низовая перемычка; 5 – здание ГЭС; 6 – верховая перемычка; 7 и 8 – бетонная плотина; 9 – водосброс; 10 – правобережная плотина из грунтовых материалов; в – варианты расположения напорных водоводов ГЭС с приплотинным зданием; г – вариант со встроенным зданием

    б

    Рис. 4.5. Красноярская ГЭС: а – план; б – поперечный разрез станционной плотины и здания ГЭС; 1 – здание ГЭС; 2 – станционная плотина; 3 – водосливная плотина; 4–7 – глухие плотины; 8 – монтажная площадка; 9 и 10 – верховой и низовой судоходные пути; 11 – поворотное устройство; 12 – судовая камера; 13 – волнозащитная стенка

    В относительно широких створах строительство обычно ведется в две очереди с возведением в первую очередь бетонной водосбросной плотины (или части плотины) и пропуском строительных расходов через стесненное русло реки, а после его перекрытия во вторую очередь – через водосбросные отверстия в возведенной водосбросной плотине и завершением строительства сооружений ГЭС.

    В узких створах для пропуска строительных расходов выполняется строительный туннель, который в условиях эксплуатации может использоваться для устройства паводкового водосброса.

    а
    б

    Рис. 4.6. Чиркейская ГЭС: а – поперечный разрез; б – план; 1 – плотина; 2 – водоприемник; 3 – напорные водоводы; 4 – здание ГЭС; 5 – подъездной туннель; 6 – эксплуатационный водосброс, совмещенный со строительным туннелем

    Примерами ГЭС с приплотинным зданием в относительно широком створе являются самая крупная в мире ГЭС «Три ущелья» мощностью 18,2 млн. кВт (см.рис. 4,4,а ), ГЭС Итайпу мощностью 12,6 млн.кВт·ч, (см. рис. 4,4,б ), Саяно-Шушенская ГЭС мощностью 6.4 млн. кВт, Красноярская ГЭС мощностью 6 млн. кВт со среднегодовой выработкой 20,4 млрд. кВт·ч. В состав сооружений Красноярской ГЭС входят гравитационная плотина длиной 1065 м и максимальной высотой 125 м (рис. 4.5), состоящая из станционной и глухих плотин, водосливной плотины, обеспечивающей пропуск паводкового расхода 14,6 тыс.м3 /с (с учетом трансформации паводка в водохранилище при форсировке уровня), а также судоподъемник.

    Примером ГЭС с приплотинным зданием в узком створе является Чиркейская ГЭС мощностью 1,0 млн.кВт с арочной плотиной длиной по гребню 333 м и максимальной высотой 233 м и с двухрядным расположением гидроагрегатов в здании (рис. 4.6). На левом берегу выполнен туннельный эксплуатационный водосброс, рассчитанный на пропуск паводкового расхода 3,5 тыс.м3 /с.

    На Токтогульской ГЭС мощностью 1,2 млн.кВт с приплотинным зданием в узком створе с двухрядным расположением гидроагрегатов в здании ГЭС и гравитационной плотиной максимальной высотой 216 м в теле плотины размещены напорные водоводы ГЭС и глубинный водосброс, а на низовой грани плотины поверхностный водосброс (рис. 4.7).

    В узких створах с бетонными плотинами и из грунтовых материалов могут применяться компоновки с береговым и подземным зданием ГЭС.

    Основные компоновки ГЭС с плотинами из грунтовых материалов приведены на рис. 4.8. При этом здание ГЭС может размещаться непосредственно за плотиной (а) или применяются наиболее часто используемые компоновки с береговым (б) и подземным (в) зданием ГЭС.

    Для компоновок ГЭС с плотинами из грунтовых материалов характерно береговое размещение эксплуатационных водосбросов для пропуска паводковых расходов: в виде берегового поверхностного водосброса с быстротоком или туннельного водосброса. Для пропуска строительных расходов обычно используются строительные туннели.


    Комплекс гидроэнергетических сооружений, включающий водоприемник, водоводы, здание ГЭС, выполненные вне плотины, называют напорно-станционным узлом (НСУ) ГЭС.

    Примером высоконапорной ГЭС с приплотинным зданием и плотиной из грунтовых материалов является Нурекская ГЭС мощностью 2,7 млн. кВт со среднегодовой выработкой 11.2 млрд. кВт·ч в год (рис. 4.9). К турбинам вода подводится от водоприемников башенного типа напорными туннелями. Для ускорения ввода в эксплуатацию ГЭС первые три гидроагрегата задействовали при пониженном напоре, когда плотина была возведена только на высоту 143 м (при проектной высоте 300 м), для чего были выполнены временный водоприемник и туннель. В период строительства пропуск расходов реки осуществлялся через три яруса строительных туннелей, расположенных на левом берегу. Паводковые расходы в эксплуатационный период (максимальный расход 5.4 тыс.м3/с обеспеченностью 0,01%) пропускаются через туннельный водосброс, соединенный с концевым участком строительного туннеля третьего яруса.


    Деривационные ГЭС применяются при широком диапазоне напоров, начиная от нескольких метров на малых ГЭС и до 2000 м (ГЭС Райссек в Австрии имеет напор 1767 м), и строятся обычно в предгорных и горных районах.

    ГЭС с безнапорной деривацией может применяться при незначительных колебаниях уровня воды в водохранилище. На таких ГЭС из водоприемника вода подается в деривационный канал, проходящий по берегу (при соответствующих топографических и геологических условиях), или в безнапорный деривационный туннель.

    ГЭС с напорной деривацией применяется как при больших, так и при незначительных колебаниях уровня воды в водохранилище. На таких ГЭС из водоприемника вода подается в напорный деривационный трубопровод, расположенный на поверхности, или в напорный деривационный туннель (рис. 4.10). Сооружения деривационной ГЭС, а также ГЭС с плотинно-деривационной (комбинированной) схемой, при которой напор создается плотиной и деривацией (см. 2.4), включают:

    Головной узел, который предназначен для создания подпора в реке и направления потока в деривацию, а также очистки воды от наносов, сора, в ряде случаев от льда, шуги, состоит из плотины, водосброса, водоприемника, отстойника, промывных и ледосбросных сооружений.

    Головные узлы с низконапорными плотинами, сооружаемые обычно на горных реках, имеют водохранилища с ограниченным объемом, в связи с чем предусматриваются мероприятия для предотвращения их заполнения наносами. Для этого в составе гидроузла водосбросная бетонная плотина, оборудованная затворами, выполняется с низким порогом и достаточной шириной водосбросного фронта, что обеспечивает при пропуске паводковых расходов промыв наносов. При большом количестве в воде взвешенных наносов, которые могут привести к быстрому истиранию проточной части гидротурбин, устраиваются отстойники в виде камеры, в которой при уменьшении скорости потока взвешенные частицы оседают на дно, а затем удаляются.

    Глухая часть плотины может выполняться бетонной или из грунтовых материалов. Водоприемник может быть совмещен с плотиной или выполнен на берегу.

    Водохранилища обычно осуществляют суточное регулирование и характеризуются небольшой глубиной сработки, что позволяет выполнить как безнапорную, так и напорную деривацию.

    Головные узлы с плотинами среднего и высокого напора характеризуются большим объемом водохранилища (с возможностью осаждения наносов в пределах мертвого объема) и значительной сработкой водохранилища при осуществлении сезонного или многолетнего регулирования стока. В связи с этим водоприемники выполняются глубинными, а деривация – напорной.

    Плотины могут выполняться бетонными (гравитационными, контрфорсными, арочными) с устройством в них водосброса и во многих случаях водоприемника ГЭС, а также из местных материалов с размещением водосброса и водоприемника вне тела плотины.

    Деривационные водоводы и сооружения на их трассе (деривация), осуществляющие подвод воды к станционному узлу, делятся на напорные (туннели, трубопроводы) и безнапорные (каналы, туннели), по трассе которых могут устраиваться водосбросы, дюкеры и другие сооружения.

    Станционный узел включает при безнапорной деривации напорный бассейн с аванкамерой, водоприемником, аварийным водосбросом и независимо от типа деривации общие сооружения: турбинные напорные водоводы, при необходимости с уравнительным резервуаром, здание ГЭС, отводящие водоводы в виде канала или туннеля (напорного или безнапорного), распределительное устройство.


    В составе станционного узла здания ГЭС выполняются береговыми открытыми, подземными и реже полуподземными.

    Характерным примером плотинно-деривационной ГЭС является Ингурская ГЭС (Грузия) мощностью 1,3 млн.кВт (рис. 4.11), в состав головного узла которой входит арочная плотина высотой 271 м с паводковым водосбросом, рассчитанным на расход 1900 м3 /с. Водохранилище имеет полезный объем 0,68 км3 при глубине сработки 70 м. От глубинного водоприемника, рассчитанного на расход 450 м3 /с, начинается деривационный напорный туннель диаметром 9,5 м и длиной 15,3 км. В состав станционного узла ГЭС входят уравнительный резервуар шахтного типа, помещение дисковых затворов, туннельные турбинные водоводы, подземное здание ГЭС, отводящий безнапорный туннель и канал общей длиной 3,2 км.

    Суммарный статический напор Ингурской ГЭС, равный 409,5 м, образуется из напоров, создаваемых плотиной (226 м) и деривацией (183,5 м). Расчетный напор равен 325 м, а среднегодовая выработка – 5.4 млрд. кВт·ч в год.

    Типы зданий ГЭС и их основные элементы. Здание ГЭС представляет собой гидротехническое сооружение, в котором с помощью гидросилового, электрического, гидромеханического, вспомогательного оборудования, систем управления механическая энергия воды преобразуется в электроэнергию, передаваемую в энергосистему потребителям. При этом должны быть обеспечены надежная работа, прочность и устойчивость здания ГЭС при действии внешних нагрузок (гидростатического и гидродинамического давления, фильтрационного давления, температурных, сейсмических воздействий и др.), а также нагрузок от работы технологического оборудования.

    Тип и конструктивные решения зданий ГЭС определяются общей компоновкой сооружений ГЭС и основным энергетическим оборудованием. В зависимости от напора и условий работы в зданиях ГЭС устанавливаются поворотно-лопатные, осевые, радиальноосевые, диагональные и ковшевые турбины.

    Нижнюю часть здания, где размещается проточный тракт, включая спиральную камеру, отсасывающую трубу, турбинное оборудование и ряд технологических систем, называют агрегатной частью, а верхняя часть здания с верхним строением, где размещаются машинный зал с гидрогенераторами и крановым оборудованием, а также силовые трансформаторы, крановое оборудование водоприемника (в русловых зданиях), ремонтных затворов отсасывающих труб и другое технологическое оборудование, – надагрегатной частью.

    На конструкцию и размеры здания ГЭС в плане и по высоте, заглубление в основание существенно влияют габариты гидроагрегата, спиральной (турбинной) камеры и отсасывающей трубы, заглубление оси рабочего колеса гидротурбины под уровень нижнего бьефа, количество гидроагрегатов. Как правило, в здании ГЭС устанавливаются два гидроагрегата и больше (например в здании Саратовской ГЭС – 23 гидроагрегата, Каневской ГЭС – 24 гидроагрегата), редко – один гидроагрегат, так как при его ремонте ГЭС полностью прекращает работу.





    В состав здания ГЭС входит монтажная площадка, на которой производятся монтаж гидроагрегатов и их ремонт в период эксплуатации. В монтажной площадке также размещается часть вспомогательных систем.

    Многоагрегатные здания ГЭС, имеющие значительную длину, делятся на отдельные секции деформационными швами: температурно-осадочными при мягком основании, температурными при скальном основании. Так, здание Волжской ГЭС мощностью 2530 МВт с 22 гидроагрегатами разделено на секции длиной 60 м, в каждой из которых размещаются по два агрегатных блока с поворотно-лопастными турбинами с диаметром рабочего колеса 9,3 м (при расчетном напоре 19 м и мощности 115 МВт).

    Блок монтажной площадки обычно от здания также отделяется швом.

    Агрегатная часть здания ГЭС характеризуется значительной массивностью. Она воспринимает гидростатическое и гидродинамическое давление в проточной части, нагрузки от оборудования и вышерасположенных конструкций здания и передает их на основание. Геологические условия оказывают значительное влияние на конструкцию агрегатной части здания. Так, при скальном основании она существенно облегчается. В агрегатной части здания размещаются системы технического водоснабжения, осушения проточной части, дренажа здания и др.

    Конструкция агрегатной части зависит от типа здания ГЭС.

    В соответствии с типами ГЭС различают:

    Русловые здания ГЭС, которые входят в состав напорного фронта и воспринимают напор со стороны верхнего бьефа. В русловых зданиях с напором до 50 м могут применяться поворотно-лопастные турбины, а при напоре более 30 м – также радиально-осевые.

    Приплотинные здания, располагающиеся за плотиной, воспринимающей напор со стороны верхнего бьефа. Подвод воды к ним осуществляется турбинными водоводами. В приплотинных зданиях с напором от 30 до 300 м применяются в основном радиальноосевые турбины, а также в определенных условиях высоконапорные поворотно-лопастные (например на ГЭС Орлик при диапазоне напоров 45–71 м и мощности агрегата 90 МВт) и диагональные (например Зейская ГЭС при диапазоне напоров 78,5–97 м и мощности агрегата 215 МВт).

    Береговые здания, используваемые при плотинной и деривационной схемах ГЭС, практически не отличаются от приплотинных зданий.

    Подземные здания, которые также применяются при плотинной и деривационной схемах ГЭС, имеют отводящие туннели (напорные или безнапорные). В зданиях деривационных ГЭС с большими напорами используются радиально-осевые турбины до напора 600 м и ковшевые турбины начиная с напоров 500 м и выше. Все приведенные типы зданий применяются как в схемах ГЭС, так и ГАЭС.

    Основные схемы агрегатной части зданий ГЭС (кроме подземных зданий ГЭС) представлены на рис. 4.12. На схемах I и II приведены агрегатные части низконапорного руслового здания ГЭС с вертикальными гидроагрегатами и изогнутыми отсасывающими трубами соответственно несовмещенного и совмещенного типа с глубинными водосбросными водоводами, а на схемах IV и V – с горизонтальными и наклонными гидроагрегатами совмещенного типа с поверхностным водосбросом.

    На схеме III приведена агрегатная часть приплотинного или деривационного здания ГЭС с металлической турбинной (спиральной) камерой круглого сечения.

    На схеме VII показана агрегатная часть деривационной ГЭС с гидроагрегатами малой мощности с применением вертикальных конических, а также раструбных отсасывающих труб. При этом для отвода воды выполняется отводящий канал прямоугольного сечения.

    На схеме VI приведена агрегатная часть деривационной ГЭС с ковшевыми (активными) гидротурбинами, которая отличается отсутствием турбинных камер обычного типа и отсасывающих труб, благодаря чему агрегатная часть значительно упрощается.

    Параметры надагрегатной части здания ГЭС зависят от конструкции и размеров верхнего строения.

    При верхнем строении закрытого типа с высоким машинным залом в пределах здания ГЭС и монтажной площадки обеспечиваются при различных климатических условиях наиболее благоприятные условия эксплуатации, монтажа и ремонта основного оборудования. При этом высота и ширина машзала определяются как условиями размещения в нем оборудования, так и доставки его кранами машзала в агрегатный блок или на монтажную площадку при монтаже или ремонте основного оборудования.

    Верхнее строение обычно состоит из несущего каркаса в виде системы колонн, на которые опираются подкрановые балки и фермы перекрытия, стен, плит и кровли перекрытия.

    Большинство зданий ГЭС выполняются с высоким машинным залом (рис. 4.13 – 4.15).

    При верхнем строении полуоткрытого типа с пониженным машинным залом в пределах здания ГЭС и монтажной площадки основное оборудование размещается в машинном зале, кроме основного крана большой грузоподъемности, вынесенного за его пределы. При монтаже и ремонте сборка и разборка гидроагрегатов производятся через съемное перекрытие над каждым гидроагрегатом (в виде съемных крышек) при помощи внешнего козлового крана. На крупных ГЭС в большинстве случаев в пониженном машинном зале устанавливается кран уменьшенной грузоподъемности, при помощи которого выполняются монтажные и ремонтные работы, не требующие использования основного крана (рис. 4.16 – 4.18).

    При верхнем строении открытого типа без машинного зала гидрогенератор располагается под съемной крышкой, а остальное оборудование в технологических помещениях агрегатной части здания ГЭС и монтажной площадки. Монтажные и ремонтные работы выполняются при помощи внешнего крана. Учитывая усложнение условий эксплуатации, монтажа и ремонта гидроагрегатов, такой тип верхнего строения применяется крайне редко.

    Русловые здания ГЭС (рис. 4.19). На русловые здания ГЭС действуют те же нагрузки, что и на бетонные плотины, и к ним предъявляются те же требования по прочности, устойчивости, фильтрационным условиям в основании, которые обеспечиваются при соответствующих габаритах здания, противофильтрационных и дренажных устройствах в основании. Русловые здания делятся на несовмещенные и совмещенные с водосбросом.

    В связи с тем, что поток, поступающий в отводящий канал от несовмещенного и особенно совмещенного здания, обладает избыточной кинетической энергией для недопущения размыва в отводящем канале выполняется крепление (см. рис. 4.2).

    Рис. 4.17. Русловое водосливное здание с горизонтальными капсульными гидроагрегатами Киевской ГЭС: а – поперечный разрез; б – машинный зал; 1 – козловой кран; 2 – капсульный гидроагрегат; 3 – паз сороудерживающей решетки

    Сопряжение здания ГЭС с примыкающей к нему земляной плотиной или с берегом осуществляется с помощью сопрягающих устоев в виде подпорных стенок (гравитационных, уголковых, контрфорсных, ячеистых и других типов).

    В русловых зданиях несовмещенного типа с вертикальными гидроагрегатами проточная часть включает водоприемник, спиральную камеру в основном таврового сечения и отсасывающую трубу, от размеров которых зависят размеры агрегатного блока. При этом ширина блока с поворотно-лопастной турбиной может составить 2,6–3,2 диаметра рабочего колеса турбины (D1). Размеры водоприемника определяются необходимым заглублением под УМО, обеспечением благоприятных гидравлических условий на входе и при сопряжении со спиральной камерой, допустимыми скоростями потока на решетках (обычно составляющими 0,8–1,2 м/с), размещением решетки, аварийно-ремонтного и ремонтного затворов, пазы которых могут быть совмещены с пазами решетки. На входном участке водоприемника, как правило, выполняется раструб с забральной стенкой, чем достигается плавный подвод воды.

    Заглубление здания ГЭС под уровень нижнего бьефа зависит от необходимого заглубления оси рабочего колеса под уровень нижнего бьефа (высоты отсасывания) и размеров отсасывающей трубы, а также инженерно-геологических условий основания.

    Главные повышающие трансформаторы устанавливаются на перекрытии над технологическими помещениями со стороны нижнего бьефа.

    Русловые здания совмещенного типа, в которых, помимо турбинных водоводов, размещаются также водосбросы, могут быть выполнены: с донными водосбросами, размещаемыми ниже спиральной камеры над отсасывающими трубами – Волгоградская, Новосибирская, Каховская ГЭС (рис. 4.19,б );

    • с донными водосбросами и высоким водоприемником турбинных водоводов – Чебоксарская, Головная ГЭС (см. рис. 4.13);
    • с глубинными водосбросами, расположенными выше спиральной камеры (между ней и генератором) – Иркутская, Саратовская, Дубоссарская ГЭС (см. рис. 4.16);
    • водосливные с вертикальными гидроагрегатами – Павловская, Плявинская (см. рис. 4.14), Днестровская ГЭС;
    • водосливные с горизонтальными гидроагрегатами – Киевская, Каневская ГЭС (см. рис. 4.17);
    • бычковые с размещением гидроагрегатов в бычках водосливной плотины – Орточальская (Грузия), Уэллс (США).

    Здания совмещенного типа позволяют существенно сократить длину водосливных плотин или вообще отказаться от них, что особенно важно при возведении ГЭС на мягких основаниях, обеспечивая снижение стоимости строительства. Так, на Новосибирской ГЭС длина водосливной плотины сократилась на 50%. На Иркутской, Павловской, Плявинской, Днестровской ГЭС пропускная способность водосбросов здания ГЭС обеспечивает пропуск расчетного паводкового расхода без водосливных плотин. В совмещенных зданиях ГЭС водоприемник включает турбинный водоприемник и водоприемную часть водосбросов.

    К недостаткам таких зданий можно отнести усложнение конструкции, значительные дополнительные гидродинамические нагрузки при работе водосбросов, усложнение условий эксплуатации.

    В зданиях совмещенного типа с горизонтальными капсульными агрегатами, применяемых при низких напорах (до 25 м), благодаря отсутствию спиральной камеры и использованию прямоосной конической отсасывающей трубы достигаются значительное уменьшение ширины агрегатного блока и повышение заложения подошвы здания. Кроме того, улучшение геометрии и гидравлических условий проточного тракта, включая подводящую часть без спиральной камеры сложной конфигурации и замену изогнутой отсасывающей трубы прямоосной конической, обладающей более высокими энергетическими показателями, позволяет снизить потери напора, увеличить на 20–30% пропускную способность горизонтального агрегата и соответственно при той же мощности уменьшить диаметр рабочего колеса. В целом применение горизонтальных капсульных агрегатов по сравнению с вертикальными сокращает ширину агрегатного блока на величину до 35%, повышает к.п.д. на 2–4%.

    Рис. 4.19. Русловые здания. Поперечные разрезы и виды с нижнего бьефа: а – Кременчугской и б – Каховской ГЭС: 1 – фундаментная плита; 2 – металлический шпунт; 3 – донный водосброс

    Поверхностный водослив обеспечивает благоприятные условия пропуска паводка, позволяет во многих случаях отказаться от устройства водосливной плотины. В таких зданиях металлическая капсула с заключенным в ней гидрогенератором размещается в проточной части здания со стороны верхнего бьефа. Доступ в капсулу осуществляется через специальные полости в вертикальном бычке. Монтаж и демонтаж гидроагрегата производятся с помощью мостового крана, который размещается в машинном зале под водосливом, и наружным козловым краном через люки со съемными крышками в пороге водослива (см. рис. 4.17).

    На ряде малых ГЭС генератор размещается открыто в машзале, ось гидроагрегата выполняется наклонно, а подвод воды к турбине осуществляется по водоводу, проходящему под генератором (см. рис. 4.12, схема V)

    Русловые здания бычкового типа применяются крайне редко, в основном на реках, несущих большое количество наносов, обеспечивая благоприятные условия пропуска через водосливные пролеты льда, наносов и паводковых расходов. На ГЭС бычкового типа Уэллс (США) мощностью 870 МВт с напором 30 м в бычках плотины установлены 10 гидроагрегатов, расчетный паводковый расход составляет 33,4 тыс.м3 /с. К недостаткам таких ГЭС можно отнести отсутствие общего машинного зала, удлинение технологических коммуникаций и в целом усложнение условий эксплуатации.

    Приплотинные здания ГЭС. В приплотинных зданиях ГЭС вода подводится к турбинам по турбинным водоводам (металлическим или сталежелезобетонным), проходящим в основном в теле или на низовой грани бетонных плотин, с размещением водоприемника на верховой грани плотин, зданием ГЭС, непосредственно примыкающим к плотине, и отдельным швом (см. рис. 4.3, 4.5–4.7). При прямолинейных в плане плотинах здание ГЭС также прямолинейно, при его расположении за арочными или арочно-гравитационными плотинами здание ГЭС может иметь в плане прямолинейное или криволинейное очертание по дуге, соответствующей очертанию низовой грани плотины.

    Для обеспечения плавного подвода воды от турбинного водовода к спиральной камере перед ней обычно выполняется горизонтальный участок водовода длиной (4–6)D 1 , в пределах которого устраиваются технологические помещения с размещением на верхнем перекрытии повышающих трансформаторов.

    При плотинах из местных материалов вода подводится к турбинам по турбинным водоводам, проходящим через тело плотины или в обход её в виде туннелей или открытых водоводов, с отдельным водоприемником в верхнем бьефе и с размещением здания ГЭС на некотором расстоянии от плотины.

    В отличие от русловых приплотинные здания не воспринимают напор верхнего бьефа, а давление, передаваемое на них через турбинные водоводы, невелико, что позволяет облегчить конструкцию здания.

    Спиральные камеры таких зданий имеют круглое сечение и выполняются металлическими или сталежелезобетонными с металлической облицовкой.

    Ширина агрегатного блока с вертикальными радиально-осевыми (или диагональными) гидротурбинами определяется размерами турбинной (спиральной) камеры и составляет не менее 4D 1 (диаметров рабочего колеса).

    Характерным примером приплотинного здания является здание Красноярской ГЭС общей длиной вместе с монтажной площадкой 428,5 м, где установлено 12 гидроагрегатов суммарной мощностью 6 млн. кВт (см. рис. 4.5). В стационарной плотине выполнен водоприемник с 24 водозаборными отверстиями. Вода подводится к агрегату по двум сталежелезобетонным водоводам диаметром 7,5 м.

    На Чиркейской ГЭС с арочной плотиной, возведенной в узком ущелье, уменьшение длины приплотинного здания достигается двухрядным расположением гидроагрегатов (см. рис. 4.6). Оба машзала обслуживаются одним мостовым краном, который по подкрановым путям в монтажной площадке переводится из одного машзала в другой. Размещение отсасывающих труб в два яруса приводит к дополнительному заглублению здания ГЭС.

    При размещении сооружений ГЭС в узком ущелье, где сложно выполнить береговые водосбросы, водосбросы проходят в теле плотины, на ее низовой грани и на перекрытии здания. Такая компоновка выполнена на Токтогульской ГЭС с двухрядным расположением агрегатов в здании ГЭС (см. рис. 4.7). При этом повышающие трансформаторы размещаются в закрытом помещении. При такой компоновке поток, проходя по водосбросу, носком-трамплином отбрасывается от здания ГЭС на значительное расстояние, а гашение энергии в основном происходит за счет аэрации потока.

    Характерным примером приплотинного здания, расположенного за плотиной из местных материалов, с подводом воды туннелями является здание Нурекской ГЭС (см. рис. 4.9, 4.18). В здании ГЭС установлено 9 агрегатов мощностью по 300 МВт с максимальным напором 275 м. Подвод воды осуществляется по трем туннелям диаметром 9 м с разделением каждого на 3 турбинных водовода. Здание выполнено с пониженным машзалом со съемными крышками в перекрытии над гидроагрегатами и монтажной площадкой. В машзале и в помещении затворов для обслуживания и ремонта оборудования установлены мостовые краны, а для монтажа и полного демонтажа гидроагрегата и шарового затвора используется козловой кран.

    Здания деривационных ГЭС с радиально-осевыми турбинами практически не отличаются от приплотинных зданий. При установке ковшевых турбин изменяется конструкция агрегатной части здания ГЭС. Вместо турбинной камеры выполняется напорный распределительный трубопровод в виде металлического кожуха, на котором крепятся сопла турбины с механизмами регулирования расхода, а вода от турбины отводится по безнапорному лотку. В зависимости от мощности гидротурбины и количества сопел ось гидроагрегата может располагаться вертикально или горизонтально. Благодаря тому, что у ковшевых турбин рабочее колесо располагается выше максимального уровня нижнего бьефа, при их установке существенно уменьшается заглубление здания.

    В зданиях высоконапорных деривационных ГЭС при большой длине или разветвлении напорных водоводов перед турбинами устанавливаются в зависимости от напора и диаметра дисковые или шаровые затворы (при напорах более 600 м только шаровые), позволяющие перекрыть трубопроводы и остановить гидроагрегат в аварийной ситуации в случае отказа направляющего аппарата, а также при нормальной эксплуатации и проведении ремонтных работ.

    В последнее время вместо предтурбинных затворов находят применение встроенные кольцевые затворы, размещаемые между статорными колоннами и лопатками направляющего аппарата, что позволяет уменьшить габариты здания, массу и стоимость оборудования.

    Подземные здания ГЭС. В последние десятилетия широкое развитие получило строительство подземных зданий ГЭС. Из них наиболее крупные построены в Канаде: Черчилл-Фолс мощностью 5225 МВт с напором 320 м, Мика – 2610 МВт с напором 183 м. С подземными зданиями выполнены Ингурская ГЭС мощностью 1300 МВт в Грузии (рис. 4.20), Верхнетуломская – 248 МВт и Усть-Хантайская – 441 МВт в России и др. В подземных зданиях проведение строительных работ не зависит от климатических условий, что имеет важное значение при строительстве в северных регионах с суровой зимой или в тропиках с длительным сезоном дождей. Подземные здания также применяются в тех случаях, когда из-за неблагоприятных природных условий в ущелье (крутых оползнеопасных склонах, высоком уровне воды при пропуске паводка), а также большого заглубления оси рабочего колеса турбины под уровень нижнего бьефа строительство открытых зданий может привести к нарушению устойчивости береговых склонов, к резкому увеличению объемов работ.


    К недостаткам подземных зданий можно отнести: в случае неблагоприятных инженерно-геологических условий значительное усложнение производства подземных работ; усложнение условий эксплуатации в связи с удлинением технологических коммуникаций, более сложными схемами выдачи мощности; увеличение затрат электроэнергии на собственные нужды, что вызвано необходимостью постоянной вентиляции помещений, их освещения и др.

    Размеры и компоновка подземных зданий ГЭС зависят в первую очередь от параметров и размещения гидросилового, электрического и гидромеханического оборудования. На крупных ГЭС, где размеры выработок машинных залов достигают больших размеров (пролет до 30 м и более), в машинном зале обычно размещают основное гидросиловое оборудование, которое обслуживается мостовыми кранами, а предтурбинные затворы выполняются в отдельном помещении, расположенном на некотором расстоянии от машзала. При длинных отводящих туннелях ремонтные затворы нижнего бьефа и обслуживающие их механизмы для перекрытия отсасывающих труб также размещаются в отдельно расположенном помещении. При большом количестве агрегатов устраивают несколько отводящих туннелей, чаще всего безнапорных или напорных (при больших колебаниях уровней нижнего бьефа) с уравнительным резервуаром. При коротких туннелях, отводящих воду отдельно от каждого агрегата, затворы нижнего бьефа устанавливаются в выходных порталах туннелей.

    Одним из важных факторов, определяющих компоновку зданий подземных ГЭС, является выбор схемы размещения главных повышающих трансформаторов: в отдельном подземном помещении (ГЭС Кариба в Зимбабве, ГЭС Яли во Вьетнаме), в расширенном подземном машзале (ГЭС Тимет I и II в Австралии), открыто на поверхности земли на площадках ОРУ (Борисоглебская, Ингурская).

    Открытое расположение трансформаторов используется в основном при неглубоком размещении подземного здания (на глубине до 200–300 м) и благоприятных топографических и геологических условиях площадки. При этом токопроводы от генераторов к трансформаторам, имеющие значительную длину, прокладываются в специальных галереях и шахтах с выполнением специальных мероприятий по отводу тепла в связи с большим тепловыделением токопроводами.

    Передача электроэнергии на ОРУ и ЗРУ от главных трансформаторов при их подземном расположении осуществляется при напряжении 110–500 кВ маслонаполненными кабелями с проведением специальных мероприятий по отводу тепла, а в последнее время также элегазовыми токопроводами.

    В подземных зданиях предусматриваются монтажные площадки, которые в большинстве случаев являются продолжением машзала, располагаясь, как правило, в его торце и соединяясь с поверхностью земли при помощи транспортных туннелей и грузовых шахт.

    Для отвода тепла и вентиляции подземных помещений здания ГЭС устанавливаются вентиляторы и кондиционеры.

    Конструкции обделок машзалов зависят от инженерно-геологических условий. В большинстве машзалов выполняется несущий свод кругового очертания с увеличением толщины железобетонной обделки у пят. В достаточно прочных породах стены крепятся набрызг-бетоном, а в менее крепких устраивается сплошная бетонная или железобетонная облицовка толщиной до 0,5 м и более с укреплением анкерами, в зонах ослабленных пород – с проведением укрепительной цементации, а в ряде случаев предусматриваются дренажные мероприятия.

    В подземном здании Ингурской ГЭС длиной 145,5 м, пролетом 21,2 м и высотой выломки 53,7 м установлено 5 гидроагрегатов. Вода подводится к агрегатам турбинными водоводами, расположенными в плане под углом к продольной оси агрегатов, что позволило разместить предтурбинные затворы в пределах машзала, практически без увеличения его пролета (см. рис. 4.20). Вода отводится напорным туннелем.

    Полуподземные здания ГЭС. При благоприятных инженерно-геологических и топографических условиях и больших колебаниях уровня нижнего бьефа могут выполняться полуподземные здания, размещаемые в траншейных выработках, причем верхние строения машзалов могут устраиваться на поверхности земли. Возможны решения полуподземных зданий с размещением одного или нескольких агрегатов в отдельных шахтах, над которыми на поверхности земли возводится верхнее строение машзала, как на Днестровской ГАЭС.


    Полуподземное здание Вилюйской ГЭС мощностью 648 МВт, выполненное в траншейной выработке глубиной 60 м, полностью размещается под поверхностью земли (рис. 4.21).

    Здания малых ГЭС. К малым обычно относятся ГЭС мощностью до 10–30 МВт. Наряду с использованием гидроэнергетических ресурсов больших рек на средних и крупных ГЭС, которые в большинстве случаев требуют создания больших водохранилищ и работают в объединенных энергосистемах, широкое развитие в мире получили малые ГЭС. Такие ГЭС используют гидроэнергетический потенциал малых рек, притоков, сбросных каналов и оказывают крайне ограниченное влияние на окружающую среду. Они могут выдавать электроэнергию в энергосистему или работать на конкретного потребителя, что особенно важно для отдаленных районов, где нет развитой сети электропередач.

    Малые ГЭС, как и крупные, разделяются на ГЭС с русловыми и приплотинными зданиями и деривационные.

    На малых ГЭС для упрощения конструкций в зданиях с установкой вертикальных гидроагрегатов могут применяться прямоосные конические отсасывающие трубы, широкое использование находят горизонтальные агрегаты, включая капсульные, а также с наклонным расположением оси агрегата (см. рис. 4.12, схемы IV, V, VII).

    На стр. 283 (фото) и на рис. 4.22 показаны деривационные ГЭС – Теребля-Рикская мощностью 27 МВт с напором 215 м и Егорлыкская мощностью 30 МВт с напором 32 м.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.