Гидравлические и пневматические подшипники. Гидростатические и гидродинамические подшипники Что такое гидродинамический подшипник в кулерах

Гидродинамический, или, как часто его называют, гидравлический подшипник – это машиностроительный узел, в котором рабочим телом, непосредственно воспринимающим нагрузку вала механизма, является тонкий слой изолирующей смазывающей жидкости, нагнетаемой в конструкцию при помощи смазываемого вала.

История изобретения подшипника

История изобретения подшипника насчитывает не одну тысячу лет. Первые примитивные подшипники скольжения относятся к эпохе неолита. Люди изготавливали их из камней и использовали в сверлильных приспособлениях для добывания огня и различных приспособлениях для прядения. С развитием человеческой цивилизации примитивные подшипники скольжения начали применяться во многих механизмах, использующих принцип колеса: в повозках, для изготовления глиняной посуды круглой формы при помощи гончарного круга, в ветряных мельницах для подъёма воды и привода жерновов.

Первые сведения о подшипниках качения относятся к 330 году до н.э. В этот период древнегреческий инженер Диад разработал конструкцию тарана для разрушения крепостных стен. В этой конструкции подвижная часть передвигалась на специальных роликах по направляющим.

Впервые металлический подшипник качения был изготовлен в ХУ111 веке в Англии для ветряной мельницы. Конструктивно он состоял из двух чугунных колец, представлявших собой направляющие, между которыми было помещено до сорока чугунных шаров.

В ХХ веке работы учёных О.Рейнолдса и Н.П.Петрова, работавших независимо друг от друга, привели к замечательному открытию. Они установили, что если скорость вращения машинного вала в подшипнике скольжения, наполненном смазкой, достаточно велика, то на валу создаётся как бы искусственная невесомость, при которой вал перестаёт давить на подшипник. Техническое применение этого открытия привело к разработкам подшипников скольжения, обладающих весьма малыми коэффициентами трения. Дальнейшие разработки открытия привели к созданию подшипников, в которых смазывающая рабочая среда нагнетается снаружи при помощи специального насоса.

Особенности применения гидродинамических подшипников

Современные гидродинамические подшипники используются в разнообразных прецизионных механизмах, когда обычные шарико- или роликоподшипники не удовлетворяют необходимым требованиям, предъявляемым к работе тех или иных конструкций и узлов. Например, при необходимости обеспечения минимальной вибрации, малого уровня шума, минимальных габаритов в стеснённых эксплуатационных условиях, достаточно большого срока службы. В процессе дальнейших разработок и усовершенствований такие подшипники становятся всё более и более конкурентоспособными в связи с уменьшающейся себестоимостью изготовления.

Отличие гидростатических подшипников от гидродинамических заключается в том, что в первых необходимое рабочее давление жидкости создаётся при помощи специального насоса, а в последних самосмазывание обеспечивается рабочим валом при его вращении. Следует учитывать, что эффект самосмазывания имеет достаточную эффективность только при достижении паспортных скоростей вращения вала, в противном случае прослойка смазки под валом имеет недостаточную толщину, а это неизбежно приводит к возрастанию сил трения и, как правило, к преждевременному износу механизма. Поэтому, для предотвращения подобных случаев, которые могут происходить достаточно часто, например, при пусках и остановках механизмов, бывает целесообразно предусмотреть специальный «пусковой» насос, который будет использоваться только при вышеупомянутых переходных режимах.

Эксплуатационные достоинства гидродинамических подшипников

Конструктивно гидродинамические подшипники достаточно просты и надёжны.Как правило, они состоят из внешнего и внутреннего колец тороидальной формы, имеющих герметичные уплотнения в местах стыков. Эксплуатационные затраты минимальны или вообще отсутствуют. Подшипники обладают практически, неограниченным сроком службы. Требования к точности их изготовления гораздо ниже, чем к точности изготовления шарико- или роликоподшипников. Уровень шума от таких подшипников гораздо ниже шума, создаваемого подшипниками качения. Вибрации минимальны. Исходя из конструктивных особенностей, подшипники в ряде случаев обладают огромной демпфирующей способностью.

Недостатки гидродинамических подшипников

Нельзя не отметить недостатки гидродинамических подшипников.

Они обладают значительными потерями энергии. Эти потери варьируются в связи с наружными температурными режимами, что значительно затрудняет проведение необходимых температурных расчётов. Гидродинамические подшипники чаще подвержены внезапным авариям при внештатных ситуациях. Подшипники весьма чувствительны к неточностям изготовления валов и их аксессуаров. Возможны утечки рабочей среды в процессе эксплуатации. Поэтому достаточно часты практики установки двух и более цапф в подшипниках для предотвращения утечек с одной стороны.

Область применения

Подшипники применяются, чаще всего, в компьютерных установках, для жёстких дисков, для вентиляторов охлаждения персонального компьютера. Возможно применение для металлообрабатывающих станков, для ядерных реакторов.

Применяются в шлифовальных станках.

На схеме приведен многоклиновый гидродинамический подшипник. F 1 , F 2 , F 3 – силы от действия масляных клиньев.

Создаются несколько клиновых зазоров, куда вращающимся валом увлекается масло. Возникает результирующая гидродинамическая сила F д , которая воспринимает внешнюю нагрузку F в любом направлении.

Клиновые зазоры создаются с помощью башмаков, самоустанавливающихся от внешней нагрузки.

1 – башмаки; 2 – опоры

Самоустановка башмаков достигается их поворотом на сферических опорах.

Рассчитывают длину башмака вдоль оси шпинделя, длину его по дуге и максимально допустимую нагрузку на один башмак.

Кроме этого, расчет гидродинамических подшипников сводится к определению нагрузочной способности F g подшипника и определению жесткости подшипника.

,

к – число вкладышей.

,

где - жесткость слоя смазки;

- жесткость элементов и сопряжений конструкции.

Недостатки гидродинамических опор : изменение положения оси шпинделя при изменении частоты его вращения.

Гидростатические подшипники.

Обеспечивают высокую точность вращения, обладают демфирующей способностью, высокой долговечностью, высокой нагрузочной способностью при любой частоте вращения шпинделя.

Различают осевые и радиальные гидростатические подшипники.

Осевой гидростатический подшипник.

Насос нагнетает масло под давлением, которое заполняет зазоры как показано на схеме. Образуется масляной слой, исключающий контакт сопряженных поверхностей при неработающем шпинделе.

Радиальный гидростатический подшипник.

По окружности располагаются полости – карманы, куда через дроссели подается масло от насоса. При приложении внешней нагрузки F вал занимает смещенное положение: h 1 > h 2 . Это приводит к повышению давления в одних карманах и понижению в противоположных. Разность давлений создает результирующую силу, воспринимающую внешнюю нагрузку F .

Расчет гидростатических подшипников сводится к определению нагрузочной способности F с , жесткости масляного слоя , расхода масла и потерь на трение.

,

где е – относительное смещение шпинделя в опоре;

Δ – диаметральный зазор Δ =(0,0008÷0,001)∙Д (мм);

Д – диаметр шейки шпинделя,

l – расстояние между опорами;

Р н – давление нагнетаемое насосом.

- жесткость слоя смазки.

[мм 3 /с] – расход масла.

где μ – динамическая вязкость масла (1÷10)∙10 3 Па 3 ∙с.

l 0 =0,1∙Д – размеры перемычек, ограничивающих карманы.

- потери на трение.

Р Т – потери на трение в рабочем зазоре.

Р Q – потери на прокачивание масла.

Недостатки гидростатических опор : сложная система питания и сбора масла.

Применение : шпинделя особо точных станков и тяжело-нагруженных станков с низкой частотой вращения, где образовывается масляной слой за счет гидродинамического эффекта.

Опоры с газовой смазкой.

По конструкции аналогичны гидростатическим опорам, только вместо масла используется сжатый воздух под давлением Р =0,3÷0,4 МПа.

Преимущества : малые потери на трение.

Недостаток : малая нагрузочная способность.

Применение : прецизионные станки небольших размеров.

Привод подач станков.

Принцип работы гидродинамических подшипников . Гидродинамический подшипник представляет собой опору жидкостного трения. Эти подшипники бывают радиальными и упорными. Радиальный подшипник имеет три или че­тыре сегмента (башмака) 1 (рис. 7.6). С помощью гидравлической системы опора заполняется маслом. Под действием силы тяжести невращающийся шпиндель 3 опускается на сегменты. Когда шпиндель приводится во вращение, он своей шероховатой поверхностью увлекает масло в зазоры между ним и сегментами. Конструкция сегмента, в частности смещенное положение его опоры 2 относительно оси симметрии, позволяет ему поворачиваться под действием давления масла, в результате чего образуется клиновый зазор, су­жающийся в направлении вращения шпинделя, В этом зазоре возникает гидро­динамическое давление р, удерживающее шпиндель во взвешенном положе­нии. Если шпиндель вращается на многоклиновых подшипниках с самоустанавливающимися сегментами, охватывающими его равномерно по окружнос­ти, незначительное смещение его из среднего положения под действием внеш­ней нагрузки приводит к перераспределению давления в клиновом зазоре и возникновению результирующей гидродинамической силы, уравновешиваю­щей внешнюю нагрузку.

Гидродинамические опоры рекомендуется применять для шпинделей, вра­щающихся с высокой постоянной или мало изменяющейся частотой и воспри­нимающих небольшую нагрузку, например для шпинделей шлифовальных станков. Достоинства гидродинамических подшипников заключаются в высо­кой точности и долговечности (смешанное трение только в моменты пусков и остановов), недостатки - в сложности конструкции системы питания опор Маслом, в изменении положения оси шпинделя при изменении частоты его вращения.

Масло для гидродинамических подшипников . Обычно применяют мине­ральное масло марки Л (велосит), имеющее коэффициент динамической вяз­кости у. = (4...5)10~ 3 Па-с при температуре 50 С. Масло (1...3 л/мин при давлении 0,1 ...0,2 МПа) подается в подшипник с помощью гидравлической системы, включающей фильтр тонкой очистки и холодильную установку.

Конструктивные исполнения радиальных гидродинамических подшипни­ков . Сегменты подшипников должны иметь возможность самостоятельно изменять свое положение как в плоскости, перпендикулярной к оси шпинде­ля, так и в плоскости, проходящей через ось. Последнее избавляет от возмож­ных высоких кромочных давлений в опоре, сопровождаемых перегревом масла в тонкой граничной пленке и потерей его смазочных свойств. Имеется ряд конструкций подшипников, у которых зазор между валом и сегментами автоматически изменяется в зависимости от нагрузки и частоты вращения шпинделя.


Одна из конструкций - ЛОН-88, разработанная ЭНИМС, представлена на рис. 7.7. Подшипник выполнен в виде отдельного блока, состоящего из двух колец 2, трех сегментов 1 и проставочного кольца 3. Наружная торцовая по­верхность сегментов находится в двухточечном контакте с коническими по­верхностями колец, вследствие чего сегменты имеют возможность устанавли­ваться вдоль оси шпинделя и в направлении его вращения. Проставочное кольцо своими выступами препятствует смещению сегментов по окружности. Изменяя толщину проставочного кольца, можно регулировать рабочий зазор в подшипнике.

Подшипники другой конструкции - ЛОН-34 - с сегментами 1 , устанавли­вающимися в результате поворота на сферических опорах А (рис. 7.8) , допус­кают скорость скольжения до 60 м/с при отсутствии кромочного давления* Опоры сегментов выполнены в виде винтов 2 из закаленной стали с мелкой резьбой. Перемещениями их в радиальном направлении регулируют радиаль­ный зазор в опоре и положение оси шпинделя. Для повышения жесткости за­зоры в резьбовых соединениях опорных штырей с корпусом выбирают гайка­ми 3, С целью уменьшения изнашивания сегментов в моменты пуска и тормо­жения шпинделя они выполнены биметаллическими: на стальную основу спо­собом центробежного литья нанесен слой бронзы Бр ОФ10-0,5 , Бр 0С10-10 или другого антифрикционного материала. Параметр шероховатости Ra рабо­чих поверхностей сегментов должен быть не выше 0,32 мкм, шеек шпинделя - не выше 0,04...0,16 мкм. Размеры сегментов и опорных винтов приведе­ны в табл. 7.1 и 7.2.


Пример конструкции шпиндельного узла . В передней и задней опорах шпиндельного узла шлифовального станка (рис. 7.9) установлены гидродина­мические подшипники 1 типа ЛОН-88. Осевые нагрузки воспринимаются дву­сторонним упорным подшипником, образованным дисками 2 и 4, С ними контактирует бурт 3 шпинделя. Смазочный материал в этот подшипник под­водится через отверстия Б и 5. Вытеканию масла из шпиндельной бабки пре­пятствуют уплотнения щелевого типа. По каналу Г масло из полостей уплотне­ний сливается в корпус бабки.

Конструктивные параметры подшипников. Диаметр D шейки шпинделя выбирают по условиям жесткости. Длина I подшипника для шлифовальных станков - 0,751), для прецизионных токарных и расточных станков - (0,85- 0,9) D. Длина дуги охвата вкладыша (0,6-0,8)1. Диаметральный зазор = 0,003 D. Обычно применяют подшипники с тремя или четырьмя вкладыша­ми.


Расчет гидродинамических радиальных подшипников . Расчет выполняется с целью определить размеры подшипника в зависимости от заданной нагрузоч­ной способности опоры и ее жесткости. Кроме того, определяют потери на тре­ние в опоре.

Ниже изложена методика расчета радиальных гидродинамических подшип­ников с тремя или четырьмя самоустанавливающимися сегментами для опор со скоростями скольжения до 30 м/с [ 67].

Исходные данные: конструктивные параметры подшипника, частота вра­щения шпинделя, наибольшая радиальная нагрузка, требуемая радиальная жесткость опоры.

Нагрузочная способность (Н) одного сегмента при центральном положе­нии шпинделя

где динамическая вязкость масла, Па-с; n -частота вращения шпинделя, об/с; D - диаметр расточки сегментов, мм; В - хорда дуги сегмента, мм; L - длина сегмента, мм; ; расчетный диаметральный зазор, мм.

Под действием результирующей силы шпиндель смещается из начального положения на е миллиметров, и его новое положение характеризуется относи­тельным эксцентриситетом Если результирующая сила направлена по оси опоры сегмента, нагрузочная способность трехсегментного подшипника

Содержание статьи

ПОДШИПНИК, конструктивный узел машин и механизмов, поддерживающий или направляющий вращающийся вал или ось. Если шейка вала в подшипнике скользит непосредственно по опорной поверхности, то он называется подшипником скольжения. Если же между шейкой вала и опорной поверхностью имеются шарики или ролики, то такой подшипник называется подшипником качения. Назначение подшипника – уменьшать трение между движущейся и неподвижной частями машины, так как с трением связаны потери энергии, нагрев и износ.

Подшипники скольжения.

Подшипник скольжения представляет собой массивную металлическую опору с цилиндрическим отверстием, в которое вставляется втулка, или вкладыш, из антифрикционного материала. Шейка, или цапфа, вала с небольшим зазором входит в отверстие втулки подшипника. Для уменьшения трения и износа подшипник обычно смазывается, так что вал отделен от втулки пленкой вязкой маслянистой жидкости. Рабочие характеристики подшипника скольжения определяются его размерами (длиной и диаметром), а также вязкостью смазки и скоростью вращения вала.

Смазка.

Для смазки подшипника скольжения можно использовать любую достаточно вязкую жидкость – масло, воду, бензин и керосин, водные и масляные эмульсии, а в некоторых случаях даже газы (например, нагретый воздух и продукты сгорания в реактивных двигателях) и жидкие металлы. Применяются также пластичные и твердые («консистентные») смазки, но их смазывающие свойства отличны от свойств жидкостей и газов. В тех случаях, когда естественной циркуляции смазки в подшипнике недостаточно для его охлаждения, предусматривают систему принудительной циркуляции с теплоизлучающими радиаторами и теплопоглотителями.

Гидростатические подшипники.

Подшипник скольжения, в который смазка подается под давлением (обычно масляным насосом) из внешнего источника, называется гидростатическим подшипником. Несущая способность такого подшипника определяется в основном давлением подаваемой смазки и не зависит от окружной скорости вала.

Гидродинамические подшипники.

Подшипник скольжения, работающий со смазкой, можно рассматривать как насос. Для того чтобы перемещать вязкую среду из области низкого давления в область высокого давления, необходимо затрачивать энергию внешнего источника. Смазка, прилипшая к контактным поверхностям, при вращении вала сопротивляется полному стиранию и выдавливается в область, где давление повышается, благодаря чему поддерживается зазор между этими поверхностями. Подшипник скольжения, в котором описанным образом создается область повышенного давления, удерживающая нагрузку, называется гидродинамическим.

Подшипники качения.

В подшипнике качения трение скольжения заменяется трением качения, благодаря чему снижаются потери энергии на трение и уменьшается износ.

Шарикоподшипники.

Наиболее распространенным подшипником качения является шарикоподшипник. Форму канавок (беговых дорожек) внутреннего и наружного колец подшипника качения необходимо очень точно контролировать при изготовлении, чтобы, с одной стороны, не было проскальзывания шариков относительно кольца, а с другой – они имели достаточно большую площадь опоры. Сепаратор задает точное положение шариков и предотвращает их взаимное трение. Кроме однорядных шариковых подшипников выпускаются подшипники с двумя и несколькими рядами шариков (двухрядные, многорядные), а также подшипники других конструкций.

Роликоподшипники.

В роликовых подшипниках элементами качения являются ролики – цилиндрические, бочкообразные, конические, игольчатые или витые. Конструкции роликоподшипников тоже разнообразны.

Смазка.

Срок службы подшипника качения определяется усталостным износом шариков (роликов) и беговых дорожек в кольцах.Такие подшипники тоже требуют смазки для уменьшения трения и износа. Важное значение имеет рабочая температура, так как при повышенных температурах не только сказывается неодинаковое тепловое расширение элементов подшипника, что ведет к увеличению проскальзывания, а следовательно и износа, но и уменьшается твердость материалов подшипника.

Подшипниковые материалы.

Подшипники скольжения изготавливаются из различных металлов, сплавов, пластмасс, композитов и других материалов. Длительное время основным подшипниковым материалом был баббит, запатентованный А.Баббитом в 1839. Этот сплав на основе олова или свинца с небольшими добавками сурьмы, меди, никеля и др. допускает ряд вариантов состава, различающихся относительным содержанием компонентов. Сплавы баббита стали как бы эталоном для оценки других подшипниковых материалов, среди которых – сочетания материалов, хорошо зарекомендовавших себя по отдельности: баббит и сталь; баббит, сталь и бронза; свинец с индием; серебро и сталь; графит и бронза. Среди пластмассовых материалов для подшипников скольжения выделяются найлон и тефлон, не требующие смазки. В качестве материалов втулок подшипников скольжения применяются также углеграфиты, металлокерамики и композиты.

Содержание статьи

ПОДШИПНИК, конструктивный узел машин и механизмов, поддерживающий или направляющий вращающийся вал или ось. Если шейка вала в подшипнике скользит непосредственно по опорной поверхности, то он называется подшипником скольжения. Если же между шейкой вала и опорной поверхностью имеются шарики или ролики, то такой подшипник называется подшипником качения. Назначение подшипника – уменьшать трение между движущейся и неподвижной частями машины, так как с трением связаны потери энергии, нагрев и износ.

Подшипники скольжения.

Подшипник скольжения представляет собой массивную металлическую опору с цилиндрическим отверстием, в которое вставляется втулка, или вкладыш, из антифрикционного материала. Шейка, или цапфа, вала с небольшим зазором входит в отверстие втулки подшипника. Для уменьшения трения и износа подшипник обычно смазывается, так что вал отделен от втулки пленкой вязкой маслянистой жидкости. Рабочие характеристики подшипника скольжения определяются его размерами (длиной и диаметром), а также вязкостью смазки и скоростью вращения вала.

Смазка.

Для смазки подшипника скольжения можно использовать любую достаточно вязкую жидкость – масло, воду, бензин и керосин, водные и масляные эмульсии, а в некоторых случаях даже газы (например, нагретый воздух и продукты сгорания в реактивных двигателях) и жидкие металлы. Применяются также пластичные и твердые («консистентные») смазки, но их смазывающие свойства отличны от свойств жидкостей и газов. В тех случаях, когда естественной циркуляции смазки в подшипнике недостаточно для его охлаждения, предусматривают систему принудительной циркуляции с теплоизлучающими радиаторами и теплопоглотителями.

Гидростатические подшипники.

Подшипник скольжения, в который смазка подается под давлением (обычно масляным насосом) из внешнего источника, называется гидростатическим подшипником. Несущая способность такого подшипника определяется в основном давлением подаваемой смазки и не зависит от окружной скорости вала.

Гидродинамические подшипники.

Подшипник скольжения, работающий со смазкой, можно рассматривать как насос. Для того чтобы перемещать вязкую среду из области низкого давления в область высокого давления, необходимо затрачивать энергию внешнего источника. Смазка, прилипшая к контактным поверхностям, при вращении вала сопротивляется полному стиранию и выдавливается в область, где давление повышается, благодаря чему поддерживается зазор между этими поверхностями. Подшипник скольжения, в котором описанным образом создается область повышенного давления, удерживающая нагрузку, называется гидродинамическим.

Подшипники качения.

В подшипнике качения трение скольжения заменяется трением качения, благодаря чему снижаются потери энергии на трение и уменьшается износ.

Шарикоподшипники.

Наиболее распространенным подшипником качения является шарикоподшипник. Форму канавок (беговых дорожек) внутреннего и наружного колец подшипника качения необходимо очень точно контролировать при изготовлении, чтобы, с одной стороны, не было проскальзывания шариков относительно кольца, а с другой – они имели достаточно большую площадь опоры. Сепаратор задает точное положение шариков и предотвращает их взаимное трение. Кроме однорядных шариковых подшипников выпускаются подшипники с двумя и несколькими рядами шариков (двухрядные, многорядные), а также подшипники других конструкций.

Роликоподшипники.

В роликовых подшипниках элементами качения являются ролики – цилиндрические, бочкообразные, конические, игольчатые или витые. Конструкции роликоподшипников тоже разнообразны.

Смазка.

Срок службы подшипника качения определяется усталостным износом шариков (роликов) и беговых дорожек в кольцах.Такие подшипники тоже требуют смазки для уменьшения трения и износа. Важное значение имеет рабочая температура, так как при повышенных температурах не только сказывается неодинаковое тепловое расширение элементов подшипника, что ведет к увеличению проскальзывания, а следовательно и износа, но и уменьшается твердость материалов подшипника.

Подшипниковые материалы.

Подшипники скольжения изготавливаются из различных металлов, сплавов, пластмасс, композитов и других материалов. Длительное время основным подшипниковым материалом был баббит, запатентованный А.Баббитом в 1839. Этот сплав на основе олова или свинца с небольшими добавками сурьмы, меди, никеля и др. допускает ряд вариантов состава, различающихся относительным содержанием компонентов. Сплавы баббита стали как бы эталоном для оценки других подшипниковых материалов, среди которых – сочетания материалов, хорошо зарекомендовавших себя по отдельности: баббит и сталь; баббит, сталь и бронза; свинец с индием; серебро и сталь; графит и бронза. Среди пластмассовых материалов для подшипников скольжения выделяются найлон и тефлон, не требующие смазки. В качестве материалов втулок подшипников скольжения применяются также углеграфиты, металлокерамики и композиты.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.