Зарядное устройство на полевом инверторе - Зарядные устройства (для авто) - Источники питания. Практические схемы универсальных зарядных устройств для аккумуляторов Зарядное устройство на полевом инверторе

Завалялся у меня тороидальный трансформатор на 30 ватт, с выходным напряжением 20 вольт. Решил сделать на его основе приличиное зарядное устройство и вот что получилось. Максимальный ток зарядки получился 1А, но его легко можно увеличить, если поставить более мощный источник напряжения - трансформатор на 100 ватт и более. Принципиальная схема в своей основе имеет ШИМ-генератор - микросхему-таймер NE555 (КР1006ВИ1), импульсы с которой поступают на затвор полевого транзистора, коммутирующего нагрузку - аккумулятор. Другой мощный транзистор отключает АКБ при аварийных ситуациях.

Схема выгодно отличается от других тем, что имеет простую и надёжную защиту от короткого замыкания выходных щупов и переполюсовки, при этом отключает заряд и включает светодиод. Так как светодиод немного подсвечивал, (тот который защита) он у меня оказался на 1.8 вольт, я решил что бы не мучится, не подбирать под разные светодиоды, поставить подстроечник.

Сделал по быстрому, просто взял и объединил две платы - генератор и защита. Зарядное устройство собрано и успешно проверено - работает великолепно! Для наглядности, снабдил зарядку ампер- и вольтметром, чтобы отслеживать процесс заряда в любой момент.

В схему можно ставить любой N-канальный полевой транзистор на нужный ток. Аккумулятор, подключаемый к ЗУ, может быть никель-кадмиевый, свинцовый гелевый, никель металл-гидридный или литий ионный. Однако в последнем случае учтите, что на нём не должен быть контроллер (как в АКБ от мобильного телефона), так как заряд происходит импульсами большого напряжения. С другой стороны такой метод заряда приветствуется, ведь эти импульсы разрушают окисел, покрывающий внутренние пластины аккумулятора, производя десульфатацию. В общем получилась простая, надёжная и функциональная схема зарядки, под многие виды аккумуляторов.

В основу устройства положен двухтактный полумостовой импульсный преобразователь (инвертор) на мощных транзисторах VT4 и VT5, управляемый широтно-импупьсным контроллером DA1 по низковольтной стороне. Такие преобразователи, устойчивые к повышению питающего напряжения и изменению сопротивления нагрузки, хорошо зарекомендовали себя в источниках питания современных компьютеров. Поскольку в ШИ-контроллере К1114ЕУ4 находятся два усилителя ошибки, для контроля зарядного тока и выходного напряжения не требуется дополнительных микросхем.

Быстродействующие диоды VD14, VD15 защищают коллекторный переход транзисторов VT4, VT5 от обратного напряжения на обмотке I трансформатора Т2 и отводят энергию выбросов обратно в источник питания. Диоды должны обладать минимальным временем включения.

Терморезистор R9 ограничивает ток зарядки конденсаторов С7, С8 при включении устройства в сеть.

Для подавления помех со стороны преобразователя служит сетевой фильтр С1, С2,С5,L1.

Цепи R19, R21, С12, VD9 и R20, R22, C13, VD10 служат для форсирования процесса закрывания коммутирующих транзисторов путем подачи в их базовую цепь минусового напряжения. Это позволяет снизить коммутационные потери и увеличить КПД преобразователя.

Конденсатор С9 предотвращает подмагничивание магнитопровода трансформатора Т2 из-за неодинаковой ёмкости конденсаторов С7 и С8.

Цепь R17, С11 способствует уменьшению амплитуды выбросов напряжения на обмотке I трансформатора Т2.

Трансформатор Т1 гальванически развязывает вторичные цепи от сети и передает управляющие импульсы в базовую цепь коммутирующих транзисторов. Обмотка III обеспечивает пропорционально токовое управление. Использование трансформаторной развязки позволило сделать эксплуатацию устройства безопасной.

Выпрямитель зарядного тока выполнен на диодах КД2997А (VD11, VD12), способных работать на сравнительно высокой рабочей частоте преобразователя.

Резистор R26 - выполняет роль датчик тока. Напряжение с этого резистора, поданное на неинвертирующий вход первого усилителя ошибки контроллера DA1, сравнивается с напряжением на его инвертирующем входе, устанавливаемом резистором R1 "ТОК ЗАРЯДА". При изменении сигнала ошибки изменяется скважность управляющих импульсов, время открытого состояния коммутирующих транзисторов инвертора и, значит, передаваемая в нагрузку мощность.

Напряжение с делителя R23, R24, пропорциональное напряжению на заряжаемой батарее, поступает на неинвертирующий вход второго усилителя ошибки и сравнивается с напряжением на резисторе R4, приложенным к инвертирующему входу этого усилителя. Таким образом происходит регулирование выходного напряжения. Это позволяет избежать интенсивного кипения электролита в конце зарядки путем снижения зарядного тока.

ШИ - контроллер имеет встроенный источник стабильного напряжения 5 В, который питает все делители напряжения, задающие требуемые значения напряжения на выходе устройства и зарядного тока.

Рис. 1. Принципиальная схема импульсного зарядного устройства.

Поскольку питание на микросхему DA1 поступает с выхода устройства, недопустимо снижение выходного напряжения устройства до 8 В - в этом случае прекращается стабилизация зарядного тока и он может превысить предельно допустимое значение. Подобные ситуации исключает узел, собранный на транзисторе VTЗ и стабилитроне VD13, - он блокирует включение зарядного устройства, если его нагрузить неисправной либо сильно разряженной батареей (с ЭДС менее 9 В). Стабилитрон, а значит, и транзистор узла остаются закрытыми, а вход DTC (вывод 4) микросхемы DA1 - подключенным через резистор R6 к выходу Uref встроенного источника образцового напряжения (вывод 14). Напряжение на входе DTC при этом - не менее 3 В, и формирование импульсов запрещено.

При подключении к выходу устройства исправной батареи открывается стабилитрон VD13 и вслед за ним транзистор VTЗ, замыкая на общий провод вход DTC контроллера и тем самым разрешая формирование импульсов на выводах 8 и 11 (выходы C1, С2 - открытый коллектор). Частота следования импульсов - около 60 кГц. После усиления по току транзисторами VT1, VT2 они через трансформатор Т1 передаются на базу коммутирующих транзисторов VT4 и VT5.

Частоту повторения импульсов определяют элементы R10 и С6. Её рассчитывают по формуле:

F=1,1/R10 * С6.

Настройка устройства

Для налаживания преобразователя потребуются ЛАТР, осциллограф, исправная аккумуляторная батарея и два измерителя - вольтметр и амперметр (до 20 А). Если в распоряжении радиолюбителя окажется развязывающий трансформатор 220 В х 220 В мощностью не менее 300 Вт, следует устройство включить через него - работать будет безопаснее.

Сначала через временный токоограничительный резистор сопротивлением 1 Ом мощностью не менее 75 Вт (или автомобильную лампу мощностью 40-60 Вт) подключают к выходу устройства батарею и убеждаются в наличии плюсового напряжения 5 В на выходе Uref (вывод 14) ШИ контроллера. Подключают осциллограф к выводам 8 и 11 (выходы С1 и С2) контроллера и наблюдают импульсы управления. Движок резистора R1 устанавливают в крайнее нижнее по схеме положение (минимальный зарядный ток) и подают от ЛАТРа на сетевой вход устройства напряжение 36 -48 В.

Транзисторы VT4 и VT5 не должны сильно нагреваться. Осциллографом контролируют напряжение между эмиттером и коллектором этих транзисторов. При наличии выбросов на фронте импульсов следует применить более быстродействующие диоды VD14, VD15 либо точнее подобрать элементы R17 и СП демпфирующей цепи.

Необходимо иметь в виду, что далеко не все осциллографы допускают измерения в цепях, гальванически связанных с сетью. Кроме этого, помните, что часть элементов устройства находится под сетевым напряжением - это небезопасно!

Если все в порядке, напряжение на сетевом входе плавно повышают ЛАТРом до 220 В и контролируют работу транзисторов VT4, VT5 по осциллографу. Выходной ток при этом не должен превышать 3 А. Вращая движок резистора R1, убеждаются в плавном изменении тока на выходе устройства.

Далее из выходной цепи удаляют временный токоограничительный резистор (или лампу) и подключают батарею непосредственно к выходу устройства. Подбирают резисторы R2, R5 так, чтобы пределы изменения зарядного тока регулятором R2 были равны 0,5 и 25 А. Устанавливают максимальное выходное напряжение равным 15 В подборкой резистора R4.

Ручку регулятора R2 снабжают шкалой, проградуированной в значениях зарядного тока. Можно оснастить устройство амперметром.

Коробка и все металлические нетоковедущие части зарядного устройства на время его работы должны бытъ надежно заземлены. Не рекомендуется оставлять работающее зарядное устройство на длительное время без присмотра.

Детали

Диоды КД257Б можно заменить на RL205, а КД2997А - на другие, в том числе на диоды Шатки с обратным напряжением более 50 В и выпрямленным током более 20 А, FR155 - на быстродействующие импульсные диоды FR205, FR305, а также UF4005.

Диоды VD11, VD12 также снабжают общим теплоотводом площадью поверхности не менее 200 см2.

ШИ-контроллер К1114ЕУ4 имеет множество зарубежных аналогов - TL494IN, DBL494, mPC494, IR2M02, КА7500.

Вместо КТ886А-1 подойдут транзисторы КТ858А, КТ858Б или КТ886Б-1.

Транзисторы VT4 и VT5 устанавливают на теплоотводы площадью не менее 100 см.

Использовать в качестве теплоотвода стенки коробки устройства, а также общий теплоотвод для диодов и транзисторов не следует из соображений безопасности эксплуатации зарядного устройства. Размеры теплоотводов можно существенно уменьшить, если принудительно охлаждать их вентилятором.

Трансформаторы самые ответственные и трудоемкие элементы любого импульсного преобразователя. От качества их изготовления зависят не только характеристики устройства, но и вообще его работоспособность.

Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К20х12x6 из феррита М2000НМ.

Обмотка I намотана проводом ПЭВ-2 0,4 равномерно по всему кольцу и содержит 2x28 витков.

Обмотки II и IV - по 9 витков провода ПЭВ-2 0,5.

Обмотка III - два витка провода МГТФ-0,8. Обмотки изолированы одна от другой и от магнитопровода двумя слоями тонкой фторопластовой ленты.

Трансформатор Т2 намотан на броневом магнитопроводе Ш10х10 из феррита М2000НМ (или, еще лучше, М2500НМС), годится и кольцевой магнитопровод аналогичного сечения.

Обмотка I содержит 35 витков провода ПЭВ-2 0,8.

Обмотка II - 2x4 витка жгута сечением не менее 4 мм2 из нескольких проводов ПЭВ-2 или ПЭЛ. Если принудительно охлаждать трансформатор, сечение жгута можно уменьшить.

Следует отметить, что от качества межобмоточной изоляции трансформаторов зависит не только надежность устройства, но и безопасность его эксплуатации, поскольку именно она изолирует вторичные цепи от напряжения сети. Поэтому не следует выполнять ее из подручных материалов - оберточной бумаги, канцелярского скотча и т. д. - и уж тем более пренебрегать ей, как иногда делают малоопытные радиолюбители. Лучше всего применять тонкую фторопластовую ленту или конденсаторную бумагу из высоковольтных конденсаторов, укладывая её в 2 - 3 слоя.

Обратноходовые преобразователи тока – инверторы состоят из мощного коммутатора импульсов с периодом, равным сумме открытого и закрытого состояния . В отличие от двухтактного преобразователя в них меньше радиокомпонентов, стабилизация режима работы выполняется оптоэлектронными обратными связями с цепей выходного напряжения на вход управления генератором, с изменением скважности импульса - широтноимпульсного преобразования сигнала управления.

Характеристика
Напряжение питания сети, В__180-240
Выходная мощность, Вт______ 100
Выходное напряжение, В______13,8
Выходной ток макс, А ________10
Частота генератора, кГц_____36
Вес, г_______________________360
Размеры, мм___________120x70x60
Емкость аккумулятора, А*ч__25-100

Регулировка выходного напряжения преобразователя - ручная или автоматическая. Высокочастотные трансформаторы преобразователя реализованы на ферритовых сердечниках.
Мощность преобразователей зависит от напряжения питания, частоты преобразования и магнитных свойств трансформатора.
Использование в качестве ключа полевого транзистора позволяет снизить потери сигнала на управление.
Ток, потребляемый первичной обмоткой трансформатора Т1, содержит прямоугольную составляющую, вызванную передачей энергии в нагрузку, и треугольную составляющую, связанную с намагничиванием материала магнито-провода.
Процессы накопления энергии и передачи ее в нагрузку в обратно-ходовых преобразователях четко разделены . В цепи стабилизации напряжения заряда аккумуляторов используется частотно-импульсное преобразование сигнала ошибки в изменение выходного напряжения на нагрузке. Схема сравнения представляет вход внешнего воздействия (модификации) на точку контрольного напряжения генератора инвертора. Использование данного вывода позволяет менять его уровень для получения модификаций схемы. С увеличением напряжения длительность импульсов на затворе силового ключа уменьшается, а, следовательно, снижается время пребывания ключевого транзистора в открытом состоянии. Напряжение на вторичных обмотках трансформатора также уменьшается и происходит стабилизация вторичного напряжения инвертора. Регулирование тока заряда выполняется широтно-импульсным изменением длительности импульса генератора при неизменной частоте. Диапазон регулировки скважности импульсов зависит от соотношения сопротивления резисторов регулятора тока заряда. В инверторе происходит тройное преобразование напряжения. Переменное напряжение электросети выпрямляется мощным диодным мостом и преобразуется инвертором в высокочастотное напряжение, которое через трансформатор подается, после выпрямления, в нагрузку.
Накопление энергии и ее передача в нагрузку разнесены во времени, максимальный ток коллектора ключевого транзистора не зависит от тока нагрузки.

Структура принципиальной схемы
В схему однотактного широтно-импульсного преобразователя (рис. 1) входит: генератор импульсов на аналоговом таймере DA1 с широтно-импульсным регулятором тока нагрузки R1, силовой ключ на полевом транзисторе VT1 с внешними цепями защиты от коммутационных помех, цепи защиты от повышения напряжения на нагрузке с гальваническим разделением цепей высокого и низкого напряжения оптопарой DA3, цепи защиты полевого транзистора от превышения токов коммутации на аналоговом стабилизаторе напряжения параллельного типа DA2, сетевого выпрямителя с ограничением пусковых токов заряда конденсатора фильтра и ограничением импульсных помех.

Описание работы элементов схемы
Генератор прямоугольных импульсов выполнен на аналоговом таймере DA1. В состав микросхемы входят: два компаратора, внутренний триггер, выходной усилитель для повышения нагрузочной способности, ключевой разрядный транзистор с открытым коллектором. Частота генерации задается внешней RC-цепью. Схемой предусмотрен вариант регулировки скважности импульсов при неизменной частоте.
Компараторы переключают внутренний триггер при достижении уровня порогового напряжения на конденсаторе С2 в 1/3 и 2/3 Un.
Вывод таймера 4 DA1 - вход сброса, используется для возвращения выхода 3 DA1 в нулевое состояние, независимо от состояния других входов, в данной схеме не используется.
Вывод 5 DA1 - вывод контрольного напряжения, позволяет получить прямой доступ к точке делителя верхнего компаратора. В схеме используется для получения модификаций режима генерации прямоугольных импульсов, с целью стабилизации выходного напряжения.
Вывод 7 DA1 соединен с внутренним разрядным транзистором аналогового таймера и используется для разряда внутренней емкости Сз-и полевого транзистора VT1. влияющую на скорость запирания.
Инвертор напряжения состоит из мощного ключевого транзистора VT1 и трансформатора Т1. Для защиты транзистора от пробоя импульсными токами и напряжениями, возникающими во время процесса преобразования, транзистор и трансформатор "обвязаны" диодно-резисторно-конденсаторными цепями.
Превышение уровня напряжения на резисторе R10 цепи истока дополнительно приводит к открытию параллельного стабилизатора DA2 и шунтирование затвора транзистора при перегрузках.
Трансформатор в инверторе заводского исполнения, от устаревших блоков питания компьютера. Трансформатор выбирается исходя из необходимой габаритной мощности, которая равна сумме мощности всех нагрузок.
Формулы по расчету сечения стержня и количества витков обмоток можно взять из . Сложность не в расчете, а в отсутствии соответствующего феррита и размеров, разобрать и перемотать заводской трансформатор без поломки феррита не удалось. Количество витков и их сечение практически подходит под расчеты. При токе нагрузки в 10 А и напряжении вторичной обмотки на холостом ходу не менее 18 В подходят трансформаторы на 250 Вт с площадью окна 15 мм2 и сердечником около 10 мм2. Зазор в таких трансформаторах состоит из тонкого слоя клея, то есть практически отсутствует, да и его введение, из-за снижения магнитной проницаемости, потребует увеличения витков обмоток почти вдвое.
Однотактные преобразователи применяются в маломощных источниках тока, когда нагрузка носит изменяющийся характер, что вполне подходит в данной ситуации.
Большую роль в максимальной мощности устройства играет частота преобразования инвертора, при росте ее в десять раз мощность трансформатора, без изменения феррита и обмоток, возрастает почти в четыре раза.
При конструировании зарядного устройства следует придерживаться рабочей частоты трансформатора с учетом характеристики транзисторного ключа. Заводское исполнение трансформаторов имеет расположение первичных и вторичных обмоток слоями, для обеспечения хорошей магнитной связи и снижения индуктивности рассеивания, дополнительно между секциями обмоток проложены электростатические экраны из бронзовой меди.
Обмотки высокочастотных трансформаторов выполняются многожильным проводом для снижения "поверхностного" эффекта.
Разбирать единственный трансформатор для уточнения расположения и количества витков не следует, потому как собрать грамотно в обратное состояние не удастся. Лучше поэкспериментировать без разборки, а обкатка схемы даст немалый опыт. Перед включением любой наспех собранной схемы, оденьте бронебойные очки или включите последовательно в сеть лампочку 220 В, предохранители в фильтрах питания при случайном коротком замыкании в любой схеме взрываются с выбросом всего, из чего они состоят . Даже заводская сборка схем преобразователей часто приводит к пробою рабочего транзистора и возможному возгоранию устройств.
Причины адекватны: занижены параметры транзистора или импульсные помехи от бытовых электроприборов превышают возможности фильтров.
Цепи снижения помех преобразователя. Неприятности в работе полевого транзистора возникают от действия межэлектродных проходных емкостей, при запирании транзистора они затягивают переходные процессы. Включение транзистора происходит подачей прямоугольного импульса с выхода 3 генератора таймера DA1 через резистор R5 на затвор, отключение -низким уровнем на выводе7 DA1. Прямое подключение затвора к таймеру, без резистора R5, приведет к критическому импульсу входного тока, который может перегрузить не только микросхему таймера, но и пробить электростатический переход между затвором и цепью сток-исток (в литературе рекомендуется пайку полевых транзисторов выполнять отключенным паяльником и при закороченных выводах транзистора, от возможного пробоя статическим электричеством).
Отсутствие резистора R7 в схеме также нежелательно, он снижает входное напряжение на затворе и разряжает входную емкость транзистора с небольшим запирающим потенциалом на резисторе R10.
Для ускорения разряда внутренней емкости полевого транзистора в обход резистора затвора устанавливают диод обратным включением, в данной схеме аналогового таймера вместо внешнего разрядного диода используется разрядный транзистор таймера, открытие которого происходит с переключением состояния внутреннего триггера, при нулевом напряжении на выходе 3 DA1.
Транзистор крепится на радиатор размерами 50*50*10 мм.
Дроссель Т2 представляет собой обмотку из десяти витков медного провода ПЭВ сечением 4x0,5 мм с ферритовым стержнем диаметром 4 мм.
Трансформатор Т1 использован от блоков питания АТ/АТХ типа R320. АР-420Х, первичная обмотка содержит 38-42 витка провода диаметром 0,8 мм, вторичная -2x7,5 витков сечением 4x0,31 мм -установленной мощности 250 Вт.
Цепи питания инвертора выполнены на импульсном диодном мосте
VD8 с повышенными нагрузочными характеристиками и конденсаторе фильтра С5.
Питание инвертора происходит непосредственно от сети, без гальванической развязки.
Колебания напряжения сети компенсируются цепями отрицательной обратной связи с гальваническим разделением вторичного и первичного, опасного для жизни, напряжения.
Заряд конденсатора фильтра ограничен резистором RT1, это защищает диодный мост VD8 от повреждения критическими токами. Импульсный ток через полевой транзистор инвертора ограничен резистором R14.
Цепи заряда аккумулятора. К ним относится выпрямитель на высокочастотной диодной сборке VD7. Для выравнивания тока заряда в фильтр входят конденсаторы С9, С11 и дроссель на трансформаторе Т2. В отсутствии выпрямленного напряжения на вторичной обмотке трансформатора Т1, при прямом ходе тока инвертора, напряжение на нагрузке поддерживается за счет энергии, накопленной в дросселе трансформатора Т2 и конденсаторе фильтра. При закрытии ключа энергия, накопленная в трансформаторе Т1, передается во вторичную обмотку и накапливается в конденсаторах фильтра и дросселе для последующей передачи в нагрузку.
Контроль тока нагрузки выполнен на гальванометре РА1 с внутренним шунтом на 10 А.
Возможные помехи, сопровождающие переключение диода VD7, устраняются конденсатором С11.
Цепи стабилизации по напряжению. Постоянное выходное напряжение преобразователя необходимо сравнивать с образцовым напряжением и вырабатывать напряжение ошибки рассогласования. Цепь стабилизации по напряжению состоит из моста на резисторах RK1, R9 и диода оптопары DA3. Повышение напряжения на выходе выпрямителя приводит к проводящему состоянию диода оптопары, который открывает транзистор оптопары с коэффициентом усиления, зависящем от примененного элемента.
Изменение (уменьшение) напряжения на выводе 5 таймера DA1 приводит к изменению частоты выходных импульсов в сторону увеличения, при этом скважность импульсов не изменяется.
Длительность выходного импульса сокращается. Это приведет к уменьшению среднего тока зарядки.
С понижением выходного напряжения происходит обратный процесс.
Конденсатор СЗ устраняет влияние импульсных помех преобразователя на работу генератора. Терморезистор RK1 в цепи стабилизации выходного напряжения при нагреве позволяет воздействовать на выходное напряжение в сторону снижения, терморезистор типа ММТ-1 крепится через изоляционную прокладку на радиатор транзистора.
Цепи стабилизации по току. Стабилизация по току выполнена на аналоге параллельного стабилизатора-таймере DA2. Повышение тока в цепи сток-исток полевого транзистора приводит к падению напряжения на резисторе R10 в цепи истока VT1, которое через резистор R8 поступает на управляющий электрод 1 DA2 аналогового стабилизатора. При пороге напряжения на входе стабилизатора выше 2,5 В таймер DA2 открывается и шунтирует затвор полевого транзистора подачей отрицательного, относительно затвора, напряжения, процесс накопления энергии в трансформаторе прервется. Значение ограниченного тока будет меньше максимально допустимого, что не приведет к повреждению ключевого транзистора. Транзистор закрывается независимо от состояния выхода генератора, ток в цепи истока прекращается.

Порядок сборки
Плата инвертора размером 110x65 мм (рис. 2) в сборе крепится в подходящем по размерам корпусе типа БП-1, на внешней стороне которого крепятся гальванометр, выключатель, предохранитель. Соединение устройства с аккумулятором выполнено многожильным проводом сечением 2 мм. Технологии зарядки и восстановления аккумуляторов см. подробно в .


Регулировка схемы
Подключение устройства к сети следует выполнить через ограничитель в виде сетевой лампочки. Налаживание начинают с проверки напряжений питания микросхемы генератора и транзистора инвертора. Наличие прямоугольных импульсов на выходе 3 DA1 укажет светодиодный индикатор HL1. Вместо нагрузки следует подключить лампочку 12/24 В от автомобиля, свечение лампочки укажет на процесс преобразования тока в инверторе, слабый накал сетевой лампочки подтверждает нормальную работу преобразователя, при слабой нагрузке ток в первичной обмотке не должен превышать 200 мА.
Уровень вторичного напряжения предварительно устанавливается подстроечным резистором R9 при среднем положении движка резистора R1.
Ток заряда зависит от скважности импульса генератора, состояние которого зависит от положения движка резистора R1.
В правом положении движка время заряда конденсатора С2 минимальное, а разряда - максимальное, импульс, поступающий на ключевой транзистор VT1, очень короткий, и средний ток в нагрузке минимальный. В правом положении движка длительность импульса максимальная, как и ток заряда аккумулятора.
Через непродолжительное время включения необходимо проверить тепловой режим радиокомпонентов.
Ввиду невозможности изменения параметров трансформатора, требуемые параметры источника питания можно отрегулировать только изменением частоты генератора (конденсатор С2), скважности импульсов R1, выводов вторичной обмотки трансформатора или полной заменой трансформатора.
По окончанию регулировочных работ и прогонке схемы по времени сетевую и нагрузочную лампочки удаляют, схему восстанавливают и включают под зарядку аккумуляторов.
Следует обратить внимание на режим работы цепей обратных связей по току и напряжению.

Обратноходовые преобразователи тока – инверторы состоят из мощного коммутатора импульсов с периодом, равным сумме открытого и закрытого состояния . В отличие от двухтактного преобразователя в них меньше радиокомпонентов, стабилизация режима работы выполняется оптоэлектронными обратными связями с цепей выходного напряжения на вход управления генератором, с изменением скважности импульса - широтноимпульсного преобразования сигнала управления.

Характеристика
Напряжение питания сети, В__180-240
Выходная мощность, Вт______ 100
Выходное напряжение, В______13,8
Выходной ток макс, А ________10
Частота генератора, кГц_____36
Вес, г_______________________360
Размеры, мм___________120x70x60
Емкость аккумулятора, А*ч__25-100

Регулировка выходного напряжения преобразователя - ручная или автоматическая. Высокочастотные трансформаторы преобразователя реализованы на ферритовых сердечниках.
Мощность преобразователей зависит от напряжения питания, частоты преобразования и магнитных свойств трансформатора.
Использование в качестве ключа полевого транзистора позволяет снизить потери сигнала на управление.
Ток, потребляемый первичной обмоткой трансформатора Т1, содержит прямоугольную составляющую, вызванную передачей энергии в нагрузку, и треугольную составляющую, связанную с намагничиванием материала магнито-провода.
Процессы накопления энергии и передачи ее в нагрузку в обратно-ходовых преобразователях четко разделены . В цепи стабилизации напряжения заряда аккумуляторов используется частотно-импульсное преобразование сигнала ошибки в изменение выходного напряжения на нагрузке. Схема сравнения представляет вход внешнего воздействия (модификации) на точку контрольного напряжения генератора инвертора. Использование данного вывода позволяет менять его уровень для получения модификаций схемы. С увеличением напряжения длительность импульсов на затворе силового ключа уменьшается, а, следовательно, снижается время пребывания ключевого транзистора в открытом состоянии. Напряжение на вторичных обмотках трансформатора также уменьшается и происходит стабилизация вторичного напряжения инвертора. Регулирование тока заряда выполняется широтно-импульсным изменением длительности импульса генератора при неизменной частоте. Диапазон регулировки скважности импульсов зависит от соотношения сопротивления резисторов регулятора тока заряда. В инверторе происходит тройное преобразование напряжения. Переменное напряжение электросети выпрямляется мощным диодным мостом и преобразуется инвертором в высокочастотное напряжение, которое через трансформатор подается, после выпрямления, в нагрузку.
Накопление энергии и ее передача в нагрузку разнесены во времени, максимальный ток коллектора ключевого транзистора не зависит от тока нагрузки.

Структура принципиальной схемы
В схему однотактного широтно-импульсного преобразователя (рис. 1) входит: генератор импульсов на аналоговом таймере DA1 с широтно-импульсным регулятором тока нагрузки R1, силовой ключ на полевом транзисторе VT1 с внешними цепями защиты от коммутационных помех, цепи защиты от повышения напряжения на нагрузке с гальваническим разделением цепей высокого и низкого напряжения оптопарой DA3, цепи защиты полевого транзистора от превышения токов коммутации на аналоговом стабилизаторе напряжения параллельного типа DA2, сетевого выпрямителя с ограничением пусковых токов заряда конденсатора фильтра и ограничением импульсных помех.

Описание работы элементов схемы
Генератор прямоугольных импульсов выполнен на аналоговом таймере DA1. В состав микросхемы входят: два компаратора, внутренний триггер, выходной усилитель для повышения нагрузочной способности, ключевой разрядный транзистор с открытым коллектором. Частота генерации задается внешней RC-цепью. Схемой предусмотрен вариант регулировки скважности импульсов при неизменной частоте.
Компараторы переключают внутренний триггер при достижении уровня порогового напряжения на конденсаторе С2 в 1/3 и 2/3 Un.
Вывод таймера 4 DA1 - вход сброса, используется для возвращения выхода 3 DA1 в нулевое состояние, независимо от состояния других входов, в данной схеме не используется.
Вывод 5 DA1 - вывод контрольного напряжения, позволяет получить прямой доступ к точке делителя верхнего компаратора. В схеме используется для получения модификаций режима генерации прямоугольных импульсов, с целью стабилизации выходного напряжения.
Вывод 7 DA1 соединен с внутренним разрядным транзистором аналогового таймера и используется для разряда внутренней емкости Сз-и полевого транзистора VT1. влияющую на скорость запирания.
Инвертор напряжения состоит из мощного ключевого транзистора VT1 и трансформатора Т1. Для защиты транзистора от пробоя импульсными токами и напряжениями, возникающими во время процесса преобразования, транзистор и трансформатор "обвязаны" диодно-резисторно-конденсаторными цепями.
Превышение уровня напряжения на резисторе R10 цепи истока дополнительно приводит к открытию параллельного стабилизатора DA2 и шунтирование затвора транзистора при перегрузках.
Трансформатор в инверторе заводского исполнения, от устаревших блоков питания компьютера. Трансформатор выбирается исходя из необходимой габаритной мощности, которая равна сумме мощности всех нагрузок.
Формулы по расчету сечения стержня и количества витков обмоток можно взять из . Сложность не в расчете, а в отсутствии соответствующего феррита и размеров, разобрать и перемотать заводской трансформатор без поломки феррита не удалось. Количество витков и их сечение практически подходит под расчеты. При токе нагрузки в 10 А и напряжении вторичной обмотки на холостом ходу не менее 18 В подходят трансформаторы на 250 Вт с площадью окна 15 мм2 и сердечником около 10 мм2. Зазор в таких трансформаторах состоит из тонкого слоя клея, то есть практически отсутствует, да и его введение, из-за снижения магнитной проницаемости, потребует увеличения витков обмоток почти вдвое.
Однотактные преобразователи применяются в маломощных источниках тока, когда нагрузка носит изменяющийся характер, что вполне подходит в данной ситуации.
Большую роль в максимальной мощности устройства играет частота преобразования инвертора, при росте ее в десять раз мощность трансформатора, без изменения феррита и обмоток, возрастает почти в четыре раза.
При конструировании зарядного устройства следует придерживаться рабочей частоты трансформатора с учетом характеристики транзисторного ключа. Заводское исполнение трансформаторов имеет расположение первичных и вторичных обмоток слоями, для обеспечения хорошей магнитной связи и снижения индуктивности рассеивания, дополнительно между секциями обмоток проложены электростатические экраны из бронзовой меди.
Обмотки высокочастотных трансформаторов выполняются многожильным проводом для снижения "поверхностного" эффекта.
Разбирать единственный трансформатор для уточнения расположения и количества витков не следует, потому как собрать грамотно в обратное состояние не удастся. Лучше поэкспериментировать без разборки, а обкатка схемы даст немалый опыт. Перед включением любой наспех собранной схемы, оденьте бронебойные очки или включите последовательно в сеть лампочку 220 В, предохранители в фильтрах питания при случайном коротком замыкании в любой схеме взрываются с выбросом всего, из чего они состоят . Даже заводская сборка схем преобразователей часто приводит к пробою рабочего транзистора и возможному возгоранию устройств.
Причины адекватны: занижены параметры транзистора или импульсные помехи от бытовых электроприборов превышают возможности фильтров.
Цепи снижения помех преобразователя. Неприятности в работе полевого транзистора возникают от действия межэлектродных проходных емкостей, при запирании транзистора они затягивают переходные процессы. Включение транзистора происходит подачей прямоугольного импульса с выхода 3 генератора таймера DA1 через резистор R5 на затвор, отключение -низким уровнем на выводе7 DA1. Прямое подключение затвора к таймеру, без резистора R5, приведет к критическому импульсу входного тока, который может перегрузить не только микросхему таймера, но и пробить электростатический переход между затвором и цепью сток-исток (в литературе рекомендуется пайку полевых транзисторов выполнять отключенным паяльником и при закороченных выводах транзистора, от возможного пробоя статическим электричеством).
Отсутствие резистора R7 в схеме также нежелательно, он снижает входное напряжение на затворе и разряжает входную емкость транзистора с небольшим запирающим потенциалом на резисторе R10.
Для ускорения разряда внутренней емкости полевого транзистора в обход резистора затвора устанавливают диод обратным включением, в данной схеме аналогового таймера вместо внешнего разрядного диода используется разрядный транзистор таймера, открытие которого происходит с переключением состояния внутреннего триггера, при нулевом напряжении на выходе 3 DA1.
Транзистор крепится на радиатор размерами 50*50*10 мм.
Дроссель Т2 представляет собой обмотку из десяти витков медного провода ПЭВ сечением 4x0,5 мм с ферритовым стержнем диаметром 4 мм.
Трансформатор Т1 использован от блоков питания АТ/АТХ типа R320. АР-420Х, первичная обмотка содержит 38-42 витка провода диаметром 0,8 мм, вторичная -2x7,5 витков сечением 4x0,31 мм -установленной мощности 250 Вт.
Цепи питания инвертора выполнены на импульсном диодном мосте
VD8 с повышенными нагрузочными характеристиками и конденсаторе фильтра С5.
Питание инвертора происходит непосредственно от сети, без гальванической развязки.
Колебания напряжения сети компенсируются цепями отрицательной обратной связи с гальваническим разделением вторичного и первичного, опасного для жизни, напряжения.
Заряд конденсатора фильтра ограничен резистором RT1, это защищает диодный мост VD8 от повреждения критическими токами. Импульсный ток через полевой транзистор инвертора ограничен резистором R14.
Цепи заряда аккумулятора. К ним относится выпрямитель на высокочастотной диодной сборке VD7. Для выравнивания тока заряда в фильтр входят конденсаторы С9, С11 и дроссель на трансформаторе Т2. В отсутствии выпрямленного напряжения на вторичной обмотке трансформатора Т1, при прямом ходе тока инвертора, напряжение на нагрузке поддерживается за счет энергии, накопленной в дросселе трансформатора Т2 и конденсаторе фильтра. При закрытии ключа энергия, накопленная в трансформаторе Т1, передается во вторичную обмотку и накапливается в конденсаторах фильтра и дросселе для последующей передачи в нагрузку.
Контроль тока нагрузки выполнен на гальванометре РА1 с внутренним шунтом на 10 А.
Возможные помехи, сопровождающие переключение диода VD7, устраняются конденсатором С11.
Цепи стабилизации по напряжению. Постоянное выходное напряжение преобразователя необходимо сравнивать с образцовым напряжением и вырабатывать напряжение ошибки рассогласования. Цепь стабилизации по напряжению состоит из моста на резисторах RK1, R9 и диода оптопары DA3. Повышение напряжения на выходе выпрямителя приводит к проводящему состоянию диода оптопары, который открывает транзистор оптопары с коэффициентом усиления, зависящем от примененного элемента.
Изменение (уменьшение) напряжения на выводе 5 таймера DA1 приводит к изменению частоты выходных импульсов в сторону увеличения, при этом скважность импульсов не изменяется.
Длительность выходного импульса сокращается. Это приведет к уменьшению среднего тока зарядки.
С понижением выходного напряжения происходит обратный процесс.
Конденсатор СЗ устраняет влияние импульсных помех преобразователя на работу генератора. Терморезистор RK1 в цепи стабилизации выходного напряжения при нагреве позволяет воздействовать на выходное напряжение в сторону снижения, терморезистор типа ММТ-1 крепится через изоляционную прокладку на радиатор транзистора.
Цепи стабилизации по току. Стабилизация по току выполнена на аналоге параллельного стабилизатора-таймере DA2. Повышение тока в цепи сток-исток полевого транзистора приводит к падению напряжения на резисторе R10 в цепи истока VT1, которое через резистор R8 поступает на управляющий электрод 1 DA2 аналогового стабилизатора. При пороге напряжения на входе стабилизатора выше 2,5 В таймер DA2 открывается и шунтирует затвор полевого транзистора подачей отрицательного, относительно затвора, напряжения, процесс накопления энергии в трансформаторе прервется. Значение ограниченного тока будет меньше максимально допустимого, что не приведет к повреждению ключевого транзистора. Транзистор закрывается независимо от состояния выхода генератора, ток в цепи истока прекращается.

Порядок сборки
Плата инвертора размером 110x65 мм (рис. 2) в сборе крепится в подходящем по размерам корпусе типа БП-1, на внешней стороне которого крепятся гальванометр, выключатель, предохранитель. Соединение устройства с аккумулятором выполнено многожильным проводом сечением 2 мм. Технологии зарядки и восстановления аккумуляторов см. подробно в .

Регулировка схемы
Подключение устройства к сети следует выполнить через ограничитель в виде сетевой лампочки. Налаживание начинают с проверки напряжений питания микросхемы генератора и транзистора инвертора. Наличие прямоугольных импульсов на выходе 3 DA1 укажет светодиодный индикатор HL1. Вместо нагрузки следует подключить лампочку 12/24 В от автомобиля, свечение лампочки укажет на процесс преобразования тока в инверторе, слабый накал сетевой лампочки подтверждает нормальную работу преобразователя, при слабой нагрузке ток в первичной обмотке не должен превышать 200 мА.
Уровень вторичного напряжения предварительно устанавливается подстроечным резистором R9 при среднем положении движка резистора R1.
Ток заряда зависит от скважности импульса генератора, состояние которого зависит от положения движка резистора R1.
В правом положении движка время заряда конденсатора С2 минимальное, а разряда - максимальное, импульс, поступающий на ключевой транзистор VT1, очень короткий, и средний ток в нагрузке минимальный. В правом положении движка длительность импульса максимальная, как и ток заряда аккумулятора.
Через непродолжительное время включения необходимо проверить тепловой режим радиокомпонентов.
Ввиду невозможности изменения параметров трансформатора, требуемые параметры источника питания можно отрегулировать только изменением частоты генератора (конденсатор С2), скважности импульсов R1, выводов вторичной обмотки трансформатора или полной заменой трансформатора.
По окончанию регулировочных работ и прогонке схемы по времени сетевую и нагрузочную лампочки удаляют, схему восстанавливают и включают под зарядку аккумуляторов.
Следует обратить внимание на режим работы цепей обратных связей по току и напряжению.

Схема в корне отличается от устройства его предшественника – сварочного трансформатора. Основой конструкции прежних сварочных аппаратов был трансформатор понижающего типа, что делало их габаритными и тяжелыми. Современные сварочные инверторы благодаря использованию при их производстве передовых разработок – это легкие и компактные устройства, отличающиеся широкими функциональными возможностями.

Основным элементом электрической схемы любого сварочного инвертора является импульсный преобразователь, вырабатывающий ток высокой частоты. Именно благодаря этому использование инвертора дает возможность легко зажигать сварочную дугу и поддерживать ее в стабильном состоянии на всем протяжении сварки. Схема сварочного инвертора в зависимости от модели может иметь определенные особенности, но принцип его работы, который будет рассмотрен ниже, остается неизменным.

Какие виды инверторов представлены на современном рынке

Для определенного типа сварки следует правильно выбирать инверторное оборудование, каждый вид которого обладает специфической электрической схемой и, соответственно, особыми техническими характеристиками и функциональными возможностями.

Инверторы, которые выпускают современные производители, могут одинаково успешно использоваться как на производственных предприятиях, так и в быту. Разработчики постоянно совершенствуют принципиальные электрические схемы инверторных аппаратов, что позволяет наделять их новыми функциями и улучшать их технические характеристики.

Инверторные устройства в качестве основного оборудования широко используются для выполнения следующих технологических операций:

  • плавящимся и неплавящимся электродами;
  • сварки по полуавтоматической и автоматической технологиям;
  • плазменной резки и др.

Кроме того, инверторные аппараты являются наиболее эффективным типом оборудования, которое используется для сварки алюминия, нержавеющей стали и других сложносвариваемых металлов. Сварочные инверторы, вне зависимости от особенностей своей электрической схемы, позволяют получать качественные, надежные и аккуратные сварные швы, выполняемые по любой технологии. При этом, что важно, компактный и не слишком тяжелый инверторный аппарат при необходимости можно в любой момент легко перенести в то место, где будут выполняться сварочные работы.

Что включает в себя конструкция сварочного инвертора

Схема сварочного инвертора, которая определяет его технические характеристики и функциональность, включает в себя такие обязательные элементы, как:

  • блок, обеспечивающий электрическим питанием силовую часть устройства (он состоит из выпрямителя, емкостного фильтра и нелинейной зарядной цепи);
  • силовая часть, выполненная на базе однотактного конвертора (в данную часть электрической схемы также входят силовой трансформатор, вторичный выпрямитель и выходной дроссель);
  • блок питания элементов слаботочной части электрической схемы инверторного аппарата;
  • ШИМ-контроллер, который включает в себя трансформатор тока и датчик тока нагрузки;
  • блок, отвечающий за термозащиту и управление охлаждающими вентиляторами (в данный блок принципиальной схемы входят вентиляторы инвертора и температурные датчики);
  • органы управления и индикации.

Как работает сварочный инвертор

Формирование тока большой силы, при помощи которого создается электрическая дуга для расплавления кромок соединяемых деталей и присадочного материала, – это то, для чего предназначен любой сварочный аппарат. Для этих же целей необходим и инверторный аппарат, позволяющий формировать сварочный ток с большим диапазоном характеристик.

В наиболее простом изложении принцип выглядит так.

  • Переменный ток с частотой 50 Гц из обычной электрической сети поступает на выпрямитель, где происходит его преобразование в постоянный.
  • После выпрямителя постоянный ток сглаживается при помощи специального фильтра.
  • Из фильтра постоянный ток поступает непосредственно на инвертор, в задачу которого входит опять преобразовать его в переменный, но уже с более высокой частотой.
  • После этого при помощи трансформатора понижают напряжение переменного высокочастотного тока, что дает возможность увеличить его силу.

Для того чтобы понять, какое значение имеет каждый элемент принципиальной электрической схемы инверторного аппарата, стоит рассмотреть его работу подробнее.

Процессы, протекающие в электрической схеме сварочного инвертора

Схема позволяет увеличивать частоту тока со стандартных 50 Гц до 60–80 кГц. Благодаря тому, что на выходе такого устройства регулировке подвергается высокочастотный ток, для этого можно эффективно использовать компактные трансформаторы. Увеличение частоты тока происходит в той части электрической схемы инвертора, где расположен контур с мощными силовыми транзисторами. Как известно, на транзисторы подается только постоянный ток, для чего и необходим выпрямитель на входе аппарата.

Принципиальная схема заводского сварочного инвертора «Ресанта» (нажмите, чтобы увеличить)

Схема инвертора от немецкого производителя FUBAG с рядом дополнительных функций (нажмите, чтобы увеличить)

Пример принципиальной электрической схемы сварочного инвертора для самостоятельного изготовления (нажмите, чтобы увеличить)

Принципиальная электрическая схема инверторного устройства состоит из двух основных частей: силового участка и цепи управления. Первым элементом силового участка схемы является диодный мост. Задача такого моста как раз и состоит в том, чтобы преобразовать переменный ток в постоянный.

В постоянном токе, преобразованном из переменного в диодном мосту, могут возникать импульсы, которые необходимо сглаживать. Для этого после диодного моста устанавливается фильтр, состоящий из конденсаторов преимущественно электролитического типа. Важно знать, что напряжение, которое выходит из диодного моста, примерно в 1,4 раза больше, чем его значение на входе. Диоды выпрямителя при преобразовании переменного тока в постоянный очень сильно нагреваются, что может серьезно сказаться на их работоспособности.

Чтобы защитить их, а также другие элементы выпрямителя от перегрева, в данной части электрической схемы используют радиаторы. Кроме того, на сам диодный мост устанавливается термопредохранитель, в задачу которого входит отключение электропитания в том случае, если диодный мост нагрелся до температуры, превышающей 80–90 градусов.

Высокочастотные помехи, создаваемые при работе инверторного устройства, могут через его вход попасть в электрическую сеть. Чтобы этого не произошло, перед выпрямительным блоком схемы устанавливается фильтр электромагнитной совместимости. Состоит такой фильтр из дросселя и нескольких конденсаторов.

Сам инвертор, который преобразует уже постоянный ток в переменный, но обладающий значительно более высокой частотой, собирается из транзисторов по схеме «косой мост». Частота переключения транзисторов, за счет которых и происходит формирование переменного тока, может составлять десятки или сотни килогерц. Полученный таким образом высокочастотный переменный ток имеет амплитуду прямоугольной формы.

Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком. Для того чтобы получить с помощью инверторного аппарата постоянный ток, после понижающего трансформатора подключают мощный выпрямитель, также собранный на диодном мосту.

Элементы защиты инвертора и управления им

Избежать влияния негативных факторов на работу инвертора позволяют несколько элементов в его принципиальной электрической схеме.

Для того чтобы транзисторы, которые преобразуют постоянный ток в переменный, не сгорели в процессе своей работы, используются специальные демпфирующие (RC) цепи. Все блоки электрической схемы, которые работают под большой нагрузкой и сильно нагреваются, не только обеспечены принудительным охлаждением, но также подключены к термодатчикам, отключающим их питание в том случае, если температура их нагрева превысила критическое значение.

Из-за того, что конденсаторы фильтра после своей зарядки могут выдавать ток большой силы, который в состоянии сжечь транзисторы инвертора, аппарату необходимо обеспечить плавный пуск. Для этого используют стабилизаторные устройства.

В схеме любого инвертора имеется ШИМ-контроллер, который отвечает за управление всеми элементами его электрической схемы. От ШИМ-контроллера электрические сигналы поступают на полевой транзистор, а от него – на разделительный трансформатор, имеющий одновременно две выходные обмотки. ШИМ-контроллер посредством других элементов электрической схемы также подает управляющие сигналы на силовые диоды и силовые транзисторы инверторного блока. Для того чтобы контроллер мог эффективно управлять всеми элементами электрической схемы инвертора, на него также необходимо подавать электрические сигналы.

Для выработки таких сигналов используется операционный усилитель, на вход которого подается формируемый в инверторе выходной ток. При расхождении значений последнего с заданными параметрами операционный усилитель и формирует управляющий сигнал на контроллер. Кроме того, на операционный усилитель поступают сигналы от всех защитных контуров. Это необходимо для того, чтобы он смог отключить инвертор от электропитания в тот момент, когда в его электрической схеме возникнет критическая ситуация.

Достоинства и недостатки сварочных аппаратов инверторного типа

Аппараты, которые пришли на смену привычным всем трансформаторам, обладают рядом весомых преимуществ.

  • Благодаря совершенно иному подходу к формированию и регулированию сварочного тока масса таких устройств составляет всего 5–12 кг, в то время как сварочные трансформаторы весят 18–35 кг.
  • Инверторы обладают очень высоким КПД (порядка 90%). Это объясняется тем, что в них расходуется значительно меньше лишней энергии на нагрев составных частей. Сварочные трансформаторы, в отличие от инверторных устройств, очень сильно греются.
  • Инверторы благодаря такому высокому КПД потребляют в 2 раза меньше электрической энергии, чем обычные трансформаторы для сварки.
  • Высокая универсальность инверторных аппаратов объясняется возможностью регулировать с их помощью сварочный ток в широких пределах. Благодаря этому одно и то же устройство можно использовать для сварки деталей из разных металлов, а также для ее выполнения по разным технологиям.
  • Большинство современных моделей инверторов наделены опциями, которые минимизируют влияние ошибок сварщика на технологический процесс. К таким опциям, в частности, относятся «Антизалипание» и «Форсирование дуги» (быстрый розжиг).
  • Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Автоматика в данном случае не только учитывает и сглаживает перепады входного напряжения, но и корректирует даже такие помехи, как затухание сварочной дуги из-за сильного ветра.
  • Сварка с использованием инверторного оборудования может выполняться электродами любого типа.
  • Некоторые модели современных сварочных инверторов имеют функцию программирования, что позволяет точно и оперативно настраивать их режимы при выполнении работ определенного типа.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.