Замощение плоскости. Замощения. При этом роль “ромбов Пенроуза” в новых пространственных структурах могут играть икосаэдры и додекаэдры

место или пространство за мостом.

Для своих учеников я предложила один способ решения задач о непериодичном замощении плоскости фигурами одной формы. Провела исследование двух ученых из Университета Дьюка (США) и мне понравилсв вариант непериодичной мозаики, полностью покрывающей плоскость, с использование плиток одной формы.

Впервые набор плиток состоял из 20426 фигур, которые представил Робетр Бергер в 1966 году. Через некоторое время их число он сократил до 104. В 70-х годах ХХ века Пенроуз представил решение своей мозаикой и использовал 2 различные фигуры. Нашла интересное решение у Дмитрия Сафина, который использовал для своей мозаики одну фигуру – правильный шестиугольник. При укладке таких плиток черные линии не должны прерываться, а флажки в вершинах шестиугольников, которые находятся на расстоянии, равном длине одной стороны плитки (на рисунке отмечены стрелками), должны смотреть в одну сторону. Здесь использовались две различные раскраски: вторая получается при отражении первой относительно вертикальной линии. Без второго варианта раскраски, впрочем, можно обойтись, если плитку сделать трехмерной. Замощение плоскости такими плитками (показано на одном из расположенных ниже рисунков) для удобства представления те флажки на шестиугольниках, которые смотрят влево, заменены здесь фиолетовыми линиями, а флажки другого типа - красными.

Также приведены примеры плиток, которые дают непериодичное замощение при учете одной лишь их формы: в этом случае пропадает необходимость устанавливать правила соединения, связанные с раскраской. В двумерном варианте такие плитки состоят из нескольких изолированных областей, но в трехмерной версии все их части связаны друг с другом.

Далее просмотрела ещё один интересный способ замощения у матеметиков из Австралии Джона Тэйлора и Джошуа Соколара. Они смогли решить задачу так называемой одной плитки. Один из самых простых примеров – гексагональное замощение, когда плоскость, подобно сотам, составляется из шестиугольников, которые соединяются по сторонам. В гексагональном случае это, к примеру, вектор, который соединяет центры соседних ячеек, которые имеют шесть углов. В процессе новой работы математики решали проблему строения непериодического замощения при помощи всего лишь одной плитки. Модель полученной ячейки шестиугольная, но благодаря особенной раскраске замощение получается непериодическим. Помимо задачи двумерной, математики предлагают 3-хмерный аналог своего собственного результата.

Помимо практических приложений теория замощения это источник вдохновения у художников. К примеру, Мауриц Эшер (художник из Нидерландов) при помощи необычных замощений создавал целые картины. В основе его картины «Восемь голов» лежит прямоугольное замощение. Этот художник выполнял рисунки по геометрическим фигурам, где можно проследить использование замощения фигур и не только одной фигурой, а множеством других. Ученики оценили всю прелесть замощения разными фигурами, принесли огромную подборку рисунков художника, пробовали выполнять работы по заданиям в виде рисунков.

Ниже представлены разные рисунки по заданной теме.




Из истории

Квазикристалл - твёрдое тело, характеризующееся симметрией, в классической , и наличием . Обладает наряду с дискретной картиной .

Квазикристаллы наблюдались впервые в экспериментах по на быстроохлаждённом Al 6 Mn, проведенных , за что ему в была присвоена . Первый открытый им квазикристаллический сплав получил название «шехтманит» ( Shechtmanite ). Статья Шехтмана не была принята к печати дважды и в сокращённом виде была в конце концов опубликована в соавторстве с привлечёнными им известными специалистами И. Блехом, Д. Гратиасом и Дж. Каном. Полученная картина дифракции содержала типичные для резкие () пики, но при этом в целом имела точечную икосаэдра, то есть, в частности, обладала осью симметрии пятого порядка, невозможной в трёхмерной периодической решётке. Эксперимент с дифракцией изначально допускал объяснение необычного явления дифракцией на множественных кристаллических двойниках, сросшихся в зёрна с икосаэдрической симметрией. Однако вскоре более тонкие эксперименты доказали, что симметрия квазикристаллов присутствует на всех масштабах, вплоть до , и необычные вещества действительно являются новой структурой организации материи.

Позднее выяснилось, что с квазикристаллами физики сталкивались задолго до их официального открытия, в частности, при изучении , полученных по от зёрен в сплавах в годах. Однако в то время икосаэдрические квазикристаллы были ошибочно идентифицированы как кубические кристаллы с большой . Предсказания о существовании структуры в квазикристаллах были сделаны в и Маки.

В настоящее время известны сотни видов квазикристаллов, имеющих точечную симметрию икосаэдра, а также десяти-, восьми- и двенадцатиугольника.

Атомная модель Al-Pd-Mn квазикристалла

СТРУКТУРА

Детерминистические и энтропийно-стабилизированные квазикристаллы

Существует две гипотезы о том, почему квазикристаллы являются (мета-)стабильными фазами. Согласно одной гипотезе, стабильность вызвана тем, что внутренняя энергия квазикристаллов минимальна по сравнению с другими фазами, как следствие, квазикристаллы должны быть стабильны и при температуре абсолютного нуля. При этом подходе имеет смысл говорить об определённых положениях атомов в идеальной квазикристаллической структуре, то есть мы имеем дело с детерминистическим квазикристаллом. Другая гипотеза предполагает определяющим вклад в стабильность. Энтропийно стабилизированные квазикристаллы при низких температурах принципиально нестабильны. Сейчас нет оснований считать, что реальные квазикристаллы стабилизируются исключительно за счёт энтропии.

Многомерное описание

Детерминистическое описание структуры квазикристаллов требует указать положение каждого атома, при этом соответствующая модель структуры должна воспроизводить экспериментально наблюдаемую картину дифракции. Общепринятый способ описания таких структур использует тот факт, что точечная симметрия, запрещённая для кристаллической решетки в трёхмерном пространстве, может быть разрешена в пространстве большей размерности D. Согласно таким моделям структуры, атомы в квазикристалле находятся в местах пересечения некоторого (симметричного) трёхмерного подпространства R D (называемого физическим подпространством) с периодически расположенными многообразиями с краем размерности D-3, трансверсальными физическому подпространству.

«Правила сборки»

Многомерное описание не даёт ответа на вопрос о том, как локальные могут стабилизировать квазикристалл. Квазикристаллы обладают парадоксальной с точки зрения классической кристаллографии структурой, предсказанной из теоретических соображений (). Теория мозаик Пенроуза позволила отойти от привычных представлений о федоровских кристаллографических группах (основанных на периодических заполнениях пространства).

МЕТАЛЛУРГИЯ

Получение квазикристаллов затрудняется тем, что все они либо метастабильны, либо образуются из расплава, состав которого отличается от состава твёрдой фазы ().

НАТУРАЛЬНЫЕ

Породы с природными Fe-Cu-Al-квазикристаллами найдены на в 1979 году. Однако только в 2009 году учёные из установили этот факт. В 2011 году они выпустили статью, в которой рассказали, что данный квазикристалл имеет внеземное происхождение. Летом того же 2011 года в ходе экспедиции в Россию минералоги нашли новые образцы природных квазикристаллов.

СВОЙСТВА

Первоначально экспериментаторам удалось попасть в очень узкую «температурную щель» и получить квазикристаллические материалы с необычными новыми свойствами. Однако позже обнаружены квазикристаллы в Al-Cu-Li и других системах, которые могут быть устойчивыми вплоть до и расти практически при , как и обычные кристаллы.

В квазикристаллах, в отличие от , при низких температурах аномально велико, а с ростом температуры уменьшается. В слоистых квазикристаллах, вдоль оси электросопротивление ведет себя как в нормальном металле, а в квазикристаллических слоях - описанным выше образом.

    Магнитные свойства. Большинство квазикристаллических - , однако сплавы с - .

    Квазикристаллов ближе к упругим свойствам аморфных веществ, чем кристаллических. Они характеризуются пониженными по сравнению с кристаллами значениями . Однако квазикристаллы менее , чем сходные по составу кристаллы и, вероятно, они смогут играть роль в металлических сплавах.

КВАЗИКРИСТАЛЛ

особый тип упаковки атомов в твердом в-ве,характеризующийся икосаэдрической (т. е. с осями 5-го порядка) симметрией, дальним ориентационнымпорядком и отсутствием трансляционной симметрии, присущей обычному кристаллическому состоянию. Квазикристалл им. упаковка атомов была открыта в быстро охлажденном металлическом сплаве Аl 6 Мn(1984) и затем обнаружена в системах Al-Fe, Ni-Ti и др. Обычные обладают трехмернойпериодичностью в расположении атомов, исключающей возможность существования осей симметрии 5гопорядка. В аморфном (стеклообразном) состоянии возможны локальные группировки атомов с икосаэдрич.симметрией, но во всем объеме аморфного тела нет дальнего порядка в расположении атомов нитрансляционного, ни ориентационного. К. может рассматриваться как промeжут. тип упорядоченностиатомов между истинно кристаллическим и стеклообразным. Двухмерной моделью К. являются упаковки("паркеты") ромбов с углом при вершине 360°/5 = 72° с осями симметрии 5го порядка: при этом промежуткизаполняются другими ромбами с углом при вершине 360°/10=36° (узор Пенроза, рис. 1); совокупности этихромбов дают равновеликие десятиугольники. Угловая ориентация всех элементов паркета повторяется навсей плоскости это и есть дальний ориснтационный порядок, но истинного трансляционного дальнегопорядка нет (хотя есть приблизительная периодичность вдоль нек-рых направлений).

Рис . 1 . Двухмерная модель квазикристалла ( выделены десятиугольники ).

Рис . 2 . Элементы структуры квазикристалла из пяти тетраэдров: фрагмент икосаэдра (а ), 32 - вершинниктриаконтаэдр (6 ).

Упаковка атомов в трехмерном пространстве К . может быть описана на основе многогранников , содержащихоси 5го порядка , или фрагментов таких многогранников . На рис . 2 , а показан характерный для К . фрагментикосаэдра

(12 - вершинника - двадцатигранника с точечной симметрией 53m ), состоящий из 5 тетраэдров . Чтобы 6 вершинных атомов и центральный образовали плотную упаковку, радиус центрального атомадолжен быть несколькоменьше , чем у вторичного атома ; напр ., в Аl 6 Мn атомный радиус Мn - 0 , 130 нм , Аl - 0 , 143 нм . Фрагментами атомной структуры К . могут быть также трехмерные аналоги узоров Пенроза - острый и тупой ромбоэдры с углами при вершинах 63 , 43 ° и 116 , 57 °, из к - рых можно сложить полиэдр - триаконтаэдр с симметрией 53m , имеющий 32 вершины (рис . 2 , 6 ). В упаковке атомов в К . могутнаблюдаться нарушения , аналогичные дислокациям (см . Дефекты ). К . типа Аl 6 Мn можно рассматриватькак метастабильные фазы . Однако существует структура К . типа сплава Al - Li - Cu - Mn , получаемая примедленном охлаждении расплава , к - рая является , по - видимому , равновесной . В настоящее времяразвиваются физ . теории квазикристаллич . состояния .

Несложно замостить плоскость паркетом из правильных треугольников, квадратов или шестиугольников (под замощением мы понимаем такую укладку, при которой вершины каждой фигуры прикладываются только к вершинам соседних фигур и не возникает ситуации, когда вершина приложилась к стороне). Примеры таких замощений приведены на рис. 1.

Рис. 1. Замощение плоскости: i - равносторонними треугольниками, ii - квадратами, iii - правильными шестиугольниками

Никакими другими правильными n -угольниками покрыть плоскость без пробелов и наложений не получится. Вот как можно это объяснить. Как известно, сумма внутренних углов любого n -угольника равна (n – 2) · 180°. Поскольку все углы правильного n -угольника одинаковые, то градусная мера каждого угла есть . Если плоскость можно замостить такими фигурами, то в каждой вершине сходится k многоугольников (для некоторого k ). Сумма углов при этой вершине должна составлять 360°, поэтому . После нескольких простых преобразований это равенство превращается в такое: . Но, как легко проверить, последнее уравнение имеет только три пары решений, если считать, что n и k натуральные числа: k = 3, n = 6; k = 4, n = 4 илиk = 6, n = 3. Этим парам чисел как раз и соответствуют приведенные на рис. 1 замощения.

А какими другими многоугольниками можно замостить плоскость без пробелов и наложений?

Задача

а) Докажите, что любым треугольником можно замостить плоскость.

б) Докажите, что любым четырёхугольником (как выпуклым, так и невыпуклым) можно замостить плоскость.

в) Приведите пример пятиугольника, которым можно замостить плоскость.

г) Приведите пример шестиугольника, которым нельзя замостить плоскость.

д) Приведите пример n -угольника для какого-либо n > 6, которым можно замостить плоскость.

Подсказки

1) В пунктах а), в), д) можно попытаться составить из одинаковых фигур «полоски», которыми потом легко замостить всю плоскость.

Пункт б): сложите из двух одинаковых четырехугольников шестиугольник, у которого противоположные стороны попарно параллельны. Такими шестиугольниками замостить плоскость уже достаточно просто.

Пункт г): используйте тот факт, что сумма углов при каждой вершине должна быть равна 360°.

2) В пункте д) можно попробовать действовать и по-другому: немного менять уже имеющиеся фигуры, чтобы получались новые замощения.

Решение

Примеры ответов изображены на рисунках.

а):

Рис. 2

б):

Рис. 3

в) Подойдет пятиугольник в форме домика:

Рис. 4

г) Такими шестиугольниками плоскость замостить не получится: в «вырезанный» угол просто не влезет полностью никакая часть такого шестиугольника. По клеточкам это хорошо видно:

Рис. 5

Можно придумать еще множество других шестиугольников, которыми нельзя замостить плоскость.

д) Вот пример двенадцатиугольника, которым можно замостить плоскость. Этот способ замощения получен как модификация обычной квадратной решетки (см. рис. 1, ii из условия):

Рис. 6

Задача замощения плоскости одинаковыми фигурками без пробелов и наложений известна с древних времен. Один из ее частных случаев - вопрос о том, какими могут быть паркеты (то есть замощения плоскости правильными многоугольниками , причем не обязательно одинаковыми) и, в частности, правильные паркеты. Правильный паркет обладает таким свойством: при помощи параллельных переносов (сдвигов без вращений), которые переводят паркет в себя, можно совместить заранее выбранный узел с любым другим узлом паркета. На рис. 1 из условия изображены как раз правильные паркеты.

Рис. 9. «Дорога гигантов» (Северная Ирландия). Фото с сайта ru.wikipedia.org

Обобщение нашей задачи - замощение пространства - современный важный раздел кристаллографии, играющий важную роль в интегральной оптике и физике лазеров.

Как ни странно, до относительно недавних времен были известны только периодические замощения (которые полностью совмещаются с собой при некотором сдвиге и его повторениях). Однако в 1974 году английский ученый Роджер Пенроуз

Рис. 11. М. К. Эшер, «Рептилии», 1946 (слева ) и «Бабочки», 1950

Паркеты и мозаики встречаются и в изобразительном искусстве. Пожалуй, наиболее известны работы голландца М. К. Эшера (M. C. Escher).

В мире математики сенсация. Открыт новый вид пятиугольников , которые покрывают плоскость без разрывов и без перекрытий.

Это всего 15-й вид таких пятиугольников и первый, открытый за последние 30 лет.

Плоскость покрывается треугольниками и четырехугольниками любой формы, а вот с пятиугольниками все гораздо сложнее и интереснее. Правильные пятиугольники не могут покрыть плоскость, но некоторые неправильные пятиугольники могут. Поиск таких фигур уже сто лет является одной из самых интересных математических задач. Квест начался в 1918 году, когда математик Карл Рейнхард открыл пять первых подходящих фигур.

Долгое время считалось, что Рейнхард рассчитал все возможные формулы и больше таких пятиугольников не существует, но в 1968 году математик Р.Б.Кершнер (R. B. Kershner) нашел еще три, а Ричард Джеймс (Richard James) в 1975 году довел их число до девяти. В том же году 50-летняя американская домохозяйка и любительница математики Марджори Райс (Marjorie Rice) разработала собственный метод нотации и в течение нескольких лет открыла еще четыре пятиугольника. Наконец, в 1985 году Рольф Штайн довел число фигур до четырнадцати.

Пятиугольники остаются единственной фигурой, в отношении которой сохраняется неопределенность и загадка. В 1963 году было доказано, что существует всего три вида шестиугольников, покрывающих плоскость. Среди выпуклых семи-, восьми- и так далее -угольников таких нет. А вот с «пентагонами» пока не все ясно до конца.

До сегодняшнего дня было известно всего 14 видов таких пятиугольников. Они изображены на иллюстрации. Формулы для каждого из них приведены по ссылке .

В течение 30 лет никто не мог найти ничего нового, и вот наконец-то долгожданное открытие! Его сделала группа ученых из Вашингтонского университета: Кейси Манн (Casey Mann), Дженнифер Маклауд (Jennifer McLoud) и Дэвид вон Деро (David Von Derau). Вот как выглядит маленький красавчик.

«Мы открыли фигуру с помощью компьютерного перебора большого, но ограниченного количества вариантов, - говорит Кейси Манн. - Конечно, мы очень взволнованы и немного удивлены, что удалось открыть новый вид пятиугольника».

Открытие кажется чисто абстрактным, но на самом деле оно может найти практическое применение. Например, в производстве отделочной плитки.

Поиск новых пятиугольников, покрывающих плоскость, наверняка продолжится.

Несложно замостить плоскость паркетом из правильных треугольников, квадратов или шестиугольников (под замощением мы понимаем такую укладку, при которой вершины каждой фигуры прикладываются только к вершинам соседних фигур и не возникает ситуации, когда вершина приложилась к стороне). Примеры таких замощений приведены на рис. 1.

Никакими другими правильными n -угольниками покрыть плоскость без пробелов и наложений не получится. Вот как можно это объяснить. Как известно, сумма внутренних углов любого n -угольника равна (n – 2) · 180°. Поскольку все углы правильного n -угольника одинаковые, то градусная мера каждого угла есть . Если плоскость можно замостить такими фигурами, то в каждой вершине сходится k многоугольников (для некоторого k ). Сумма углов при этой вершине должна составлять 360°, поэтому . После нескольких простых преобразований это равенство превращается в такое: . Но, как легко проверить, последнее уравнение имеет только три пары решений, если считать, что n и k натуральные числа: k = 3, n = 6; k = 4, n = 4 или k = 6, n = 3. Этим парам чисел как раз и соответствуют приведенные на рис. 1 замощения.

А какими другими многоугольниками можно замостить плоскость без пробелов и наложений?

Задача

а) Докажите, что любым треугольником можно замостить плоскость.

б) Докажите, что любым четырёхугольником (как выпуклым, так и невыпуклым) можно замостить плоскость.

в) Приведите пример пятиугольника, которым можно замостить плоскость.

г) Приведите пример шестиугольника, которым нельзя замостить плоскость.

д) Приведите пример n -угольника для какого-либо n > 6, которым можно замостить плоскость.

Подсказка 1

В пунктах а), в), д) можно попытаться составить из одинаковых фигур «полоски», которыми потом легко замостить всю плоскость.

Пункт б): сложите из двух одинаковых четырехугольников шестиугольник, у которого противоположные стороны попарно параллельны. Такими шестиугольниками замостить плоскость уже достаточно просто.

Пункт г): используйте тот факт, что сумма углов при каждой вершине должна быть равна 360°.

Подсказка 2

В пункте д) можно попробовать действовать и по-другому: немного менять уже имеющиеся фигуры, чтобы получались новые замощения.

Решение

Примеры ответов изображены на рисунках.

в) Подойдет пятиугольник в форме домика:

г) Такими шестиугольниками плоскость замостить не получится: в «вырезанный» угол просто не влезет полностью никакая часть такого шестиугольника. По клеточкам это хорошо видно:

Можно придумать еще множество других шестиугольников, которыми нельзя замостить плоскость.

д) Вот пример двенадцатиугольника, которым можно замостить плоскость. Этот способ замощения получен как модификация обычной квадратной решетки (см. рис. 1, ii из условия):

Послесловие

Задача замощения плоскости одинаковыми фигурками без пробелов и наложений известна с древних времен. Один из ее частных случаев - вопрос о том, какими могут быть паркеты (то есть замощения плоскости правильными многоугольниками , причем не обязательно одинаковыми) и, в частности, правильные паркеты. Правильный паркет обладает таким свойством: при помощи параллельных переносов (сдвигов без вращений), которые переводят паркет в себя, можно совместить заранее выбранный узел с любым другим узлом паркета. На рис. 1 из условия изображены как раз правильные паркеты.

Не слишком сложно доказать, что существует всего 11 различных типов правильных паркетов (см. List of uniform tilings). Доказывается это примерно так же, как мы в условии задачи доказывали, что есть всего три типа паркета из одинаковых правильных многоугольников - градусные меры углов каждого правильного многоугольника известны, нужно лишь подобрать их так, чтобы в сумме получалось 360°, а это делается просто небольшим перебором вариантов. Существует много древних мозаик, в основу которых положены эти паркеты.

Мозаики из глины, камня и стекла (и паркеты из дерева и кафеля) - наиболее известное и понятное применение данной теории в жизни. Многие из нас могут убедиться в этом, зайдя к себе на кухню или в ванную. Будущие дизайнеры специально изучают математические паркеты, ведь они и их вариации часто используются в архитектуре и декоре.

Замощения встречаются и в природе. Кроме всем известных пчелиных сот наиболее яркие примеры - это геологические образования на мысе Столбчатом (остров Кунашир, большая гряда Курильских островов) и «Дорога гигантов» в Северной Ирландии.

Обобщение нашей задачи - замощение пространства - современный важный раздел кристаллографии, играющий важную роль в интегральной оптике и физике лазеров.

Как ни странно, до относительно недавних времен были известны только периодические замощения (которые полностью совмещаются с собой при некотором сдвиге и его повторениях). Однако в 1974 году английский ученый Роджер Пенроуз придумал непериодические мозаики, которые теперь называют в его честь мозаиками Пенроуза. Позднее (в 1984 году) подобные непериодические структуры были открыты в

Помыслить немыслимое и утвердиться в том, что оно все-таки мыслимо – это явление геометрии.

А.Д.Александров

Класс: 8-9

Цели:

  • Формирование и развитие представлений учащихся о новых математических объектах и математических понятиях.
  • Развитие творческого интереса к математике.
  • Расширение математического кругозора учащихся.
  • Воспитание доброжелательности и взаимопомощи при совместной работе.

Задачи внеклассного занятия:

  • Практическое применение математических знаний при изучении новых математических объектов.
  • Развитие логического мышления и навыков исследовательской деятельности.
  • Знакомство с применением новых полученных знаний в современной науке.
  • Постановка вопросов для дальнейшего изучения темы.

Подготовка: работа в группах, каждая группа готовит модели правильных многоугольников, а также копии произвольных треугольников и четырехугольников.

Формы организации работы учащихся: фронтальная, групповая.

Формы организации работы учителя: руководящая, организационная, координирующая.

Технические условия: мультимедийный кабинет.

Используемое оборудование: компьютер, проектор, экран, CD-носитель.

Презентация «Паркеты – замощение плоскости многоугольниками».

Ход занятия.

Паркеты с древних времён привлекают к себе внимание людей. Ими застилали полы, покрывали стены комнат, украшали фасады зданий, использовали в декоративно-прикладном искусстве.
Хотя изучение паркетов не входит в школьную программу по математике, интерес к этой теме возник после решения простой школьной задачи: «Докажите, что из одинаковых плиток, имеющих форму равнобедренной трапеции, можно сделать паркет, полностью покрывающий любую часть плоскости». А какими еще многоугольниками можно замостить плоскость?

Правильные паркеты

Паркетом называется такое замощение плоскости многоугольниками, при котором вся плоскость оказывается покрытой этими многоугольниками и любые два многоугольника либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек.

Паркет называется правильным , если он составлен из равных правильных многоугольников.
Примеры правильных паркетов были известны ещё пифагорейцам. Они дают заполнение плоскости: квадратами, равносторонними треугольниками, правильными шестиугольниками.

Задание для учащихся: из имеющихся моделей правильных многоугольников составьте правильные паркеты.

Убедимся в том, что никакой другой правильный многоугольник паркета не образует. И здесь нам понадобится формула суммы углов многоугольника. Если паркет составлен из n -угольников, то в каждой вершине паркета будет сходитьсяk = 360°/ a n многоугольников, где a n угол правильного n -угольника. Легко найти, что a 3 = 60°, a 4 = 90°, a 5 = 108°,a 6 = 120° и 120° < a n < 180° при п > 7. Поэтому 360° делится нацело на a n только при п = 3; 4; 6.
Интересно, что среди правильного треугольника, квадрата и правильного шестиугольника, данного периметра, наибольшую площадь имеет шестиугольник. Это обстоятельство приводит в природе к тому, что форму правильных шестиугольников имеют пчелиные соты, поскольку пчёлы, строя соты, инстинктивно стараются сделать их возможно более вместительными, израсходовав при этом возможно меньше воска.

Полуправильные паркеты.

Расширим способы составления паркетов из правильных многоугольников, разрешив использовать в них правильные многоугольники с различным числом сторон, но так, чтобы вокруг каждой вершины правильные многоугольники располагались в одном и том же порядке. Такие паркеты называются полуправильными .

Задание для учащихся : из имеющихся моделей правильных многоугольников составьте полуправильные паркеты.

Для выяснения количества полуправильных паркетов нужно проанализировать возможные случаи расположения правильных многоугольников вокруг общей вершины. Для этого обозначим через a 1 ,a 2 … – углы правильных многоугольников, имеющих общую вершину. Расположим их в порядке возрастания a 1 < a 2 < … Учитывая, что сумма всех таких углов должна быть равна 360°, составим таблицу, содержащую возможные наборы углов и укажем соответствующие паркеты.
Таким образом, всего имеется 11 правильных и полуправильных паркетов.

Планигоны

Рассмотрим и другое обобщение - паркеты из копий произвольного многоугольника, правильные «по граням» (т. е. которые переводят любую за­данную плитку в любую другую). Многоугольники, которые могут быть плитками в этих паркетах, называются планигонами .
Ясно, что плоскость можно уложить копиями произвольного треугольника, но менее очевидно, что произвольный четырёхугольник - планигон. То же верно и для любого шестиугольника, противоположные стороны которого равны и параллельны.

Задание для учащихся : из имеющихся копий произвольных треугольников и четырехугольников составьте паркеты.

Все рассмотренные выше паркеты периодичны, т. е. в каждом из них можно выделить (и даже многими способами) составленную из нескольких плиток область, из которой параллельными сдвигами получается весь паркет.
Интерес учёных к таким конструкциям объясняется тем, что периодические замощения, особенно замощения пространства, моделируют кристаллические структуры.

Вопрос на перспективу: Существуют ли непериодические замощения?

Вместо заключения

Особый интерес представляет создание собственных паркетов – заполнение плоскости одинаковыми фигурами (элементами паркета) с помощью, например, осевой симметрии и параллельного переноса. Главное, что в основе построения лежит многоугольник, равновеликий элементу паркета.

Домашнее задание. Составить понравившийся паркет с помощью любых средств: от цветной бумаги до компьютерных технологий.

Список используемой литературы:

1. Атанасян Л.С. и др. Геометрия, 7-9.– М.: Просвещение, 2010.
2. Атанасян Л.С. и др. Геометрия: Доп. главы к шк. учеб. 8 кл.: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. – М.: Просвещение, 1996.
3. Атанасян Л.С. и др. Геометрия: Доп. главы к шк. учеб. 9 кл.: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики. – М.: Просвещение, 1997.
4. Колмогоров А.Н. Паркеты из правильных многоугольников.//Квант, 1970, № 3.
5. Смирнов В.А. Компьютер помогает геометрии //Математика: Еженедельное учебно-методическое прил. к газ. «Первое сент.». – 2003, № 21.
6. Совертков П.И. и др. Геометрический паркет на экране компьютера.//Информатика и образование, 2000, № 9.
7. Энциклопедия для детей. Т.11.Математика/ Глав.ред. М.Д.Аксенова. – М.: Аванта+, 2008.

M =\langle \Sigma, Q, \Pi, B \in \Pi, s,\delta: Q \times \Pi \rightarrow Q \times \Pi \times \{ \leftarrow, \downarrow, \rightarrow \} \rangle и слово w \in \Sigma^* . Требуется определить, остановится ли данная МТ на входе w .

Для того, чтобы доказать неразрешимость задачи о замощении, для заданной машины Тьюринга M и слова w построим набор полимино, которым можно замостить четверть плоскости, если МТ не остановится на заданном слове. Если же МТ останавливается, то четверть плоскости полученным набором замостить невозможно.

Будем эмулировать процесс выполнения МТ на входе w \in \Sigma^* путем построения вертикальных рядов, каждый из которых эквивалентен конфигурации МТ на определенном этапе выполнения. Первый ряд эквивалентен начальной конфигурации МТ, а каждый следующий ряд соответствует следующей конфигурации. Говоря простым языком, каждый ряд представляет из себя "снимок" состояния машины на соответствующем этапе выполнения.

На рисунке сверху изображены два вертикальных ряда полимино. Первый ряд соответствует МТ и слову w . Первое полимино соответствует паре из первого символа и начального состояния, все остальные - символам из w . Во втором ряду второе полимино соответствует паре из символа w и состояния q . То есть МТ сделала переход \delta (s, w) = \langle q, w, \rightarrow \rangle .

Теперь на основе заданной МТ будем строить набор полимино, которые будут иметь следующий вид:

На каждой стороне такого полимино находится определенное число выступов/впадин. Каждому символу из алфавита, состоянию и паре из состояния и символа сопоставим некоторое уникальное число (можно ограничить k \leqslant |\Pi| + |Q| + |\Pi \times Q| + 1 ) – это и будет количество выступов/впадин, находящихся на одной стороне полимино.

Сначала построим набор полимино, который задаёт начальную конфигурацию:

где *i – уникальное число для каждой смежной пары полимино из начальной конфигурации. Первое полимино характеризует начальное состояние, последующие за ним кодируют входное слово, и завершающее полимино требуется для корректного замощения оставшейся части ряда.

В нем количество впадин слева равно количеству выступов справа. Такой тип полимино передает содержимое ленты МТ следующему ряду.

Теперь построим полимино для функции перехода \delta (q, c) = \langle p, d, D \rangle , где q \in Q, p \in Q, c \in \Pi, d \in \Pi, D\in \{\leftarrow, \downarrow, \rightarrow \} :

На рисунке изображены (снизу вверх) полимино соответствующие значениям D = \{\leftarrow, \downarrow, \rightarrow \} . Вместе со следующим типом они эмулируют перемещение головки МТ.

Эти полимино получают на вход символ алфавита c от предыдущего ряда и состояние p от соседнего полимино, а затем передает следующему ряду пару из состояния и символа.

Построим последний тип полимино, характеризующих состояния \#_Y и \#_N :

Такое полимино имеет уникальное число выступов справа. Ни одно другое полимино из полученного набора не сможет к нему присоединиться, и процесс дальнейшего замощения будет невозможен.

Полученный алгоритм сведения получает на вход МТ и слово, а на выход выдает соответствующий им набор полимино.

Таким образом, четверть плоскости можно замостить тогда и только тогда, когда закодированная МТ не останавливается на данном входе. Иными словами, есть бесконечное количество конфигураций, не переходящих в конечное состояние. Это значит, что мы сможем замощать плоскость ряд за рядом бесконечное количество раз, что в результате замостит плоскость.

Если же МТ остановится, то и замостить четверть плоскости мы не сможем из-за того, что конечное полимино не имеет продолжения. Значит задача о замощении полимино не разрешима.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.