Изучение микробов. На страже здоровья людей и природы, или Как ученые исследуют бактерии? Значение бактерий в биосфере и народном хозяйстве

Получив достаточно информации о мире микроорганизмов, мне стало интересно на них посмотреть, и увидеть, на конкретных примерах, как они работают (Приложение 3 ).


Для этого я решила провести ряд экспериментов. Быстрее всего дождаться результата, оказалось, от деятельности дрожжей.

Полезное применение микроорганизмов на примере дрожжей.

Замесила две порции теста: одна порция дрожжевого, другая без добавления дрожжей и испекла булочки.

через 20 минут дрожжевое тесто стало подниматься, т.е. началась работа микроорганизмов, а обычное тесто осталось без изменения. Пирожки из дрожжевого теста получилась пышными, мягкими и вкусными, а булочки из теста без добавления дрожжей получились тяжелые и плоские.

Вывод: дрожжи вырабатывают углекислый газ, в результате этого тесто «растет» поднимается, становится пышным.

Наблюдение за молоком (опыт взят из моего прошлогоднего проекта!).

Я поставила два стакана с молоком в холодильник, и два стакана оставила на сутки на батарее (по одному стакану с пастеризованным и кипяченым молоком).

пастеризованное молоко на батарее скисло на второй день, на третий день скисло кипяченое молоко на батарее, затем на седьмой день скисло пастеризованное молоко в холодильнике, на девятый день скисло кипяченое молоко в холодильнике! (Таблица 1).

Приложение 3. Таблица 1

Наблюдение за молоком
(Опыт 2)

Вывод: бактерии гниения испортили молоко, а бактерии молочнокислого брожения превратили его в простоквашу, которую можно употреблять в пищу. В холодильнике дольше хранится кипяченое молоко, а быстрее скисает пастеризованное.

Я увидела, как действуют молочные микроорганизмы.

Получение сметаны из сливок.

Взяла сливки и поставила их в теплое место.

через день получила сметану, даже не взбивая.

Вывод: сливки быстро скисают в теплом месте в открытой емкости.

Таким образом, я убедилась, что «полезные» микроорганизмы помогают сделать многие продукты вкусными и полезными!

Определение микроорганизмов при наличии консервантов в питательной среде.


Я создала питательную среду для размножения бактерий (сварила «живой бульон» и бульон из куриного кубика «Knor», добавила в него сахар). Разлила по четырем пробиркам. Пробирки пометила цветом, и пронумеровала. Первую (синюю и красную) пробирку оставила чистой, а во вторую (синюю и красную) опустила палец. Все пробирки закрыла крышкой, и поставила в теплое место (Таблица 2 ).

Таблица 2

Определение микроорганизмов
при наличии консервантов в питательной среде
(Опыт 4)

Дата (период появления микро-организмов) Маркированная проба с питательной средой (описание)
1 2 1 2
Бульон «Knor» (синий) «Живой» бульон (синий) Бульон «Knor» (красный), палец «Живой» бульон (красный), палец
08.01.2017 – 10.01.2017
(2 дня)
помутнение бульона
08.01.2017 – 11.01.2017
(3 дня)
появился неприятный запах
08.01.2017 – 12.01.2017
(4 дня)
появилась пена появился незначительный осадок появились пятна плесени появился осадок
08.01.2017 – 13.01.2017
(4 дня)
- - пятна плесени увеличились в диаметре
08.01.2017 – 16.01.2017
(7 дней)
- количество осадка увеличилось пятна плесени продолжают расти увеличение осадка в два раза

через два дня жидкость в сосудах помутнела, через 3 дня стала издавать неприятный запах. Я обратила внимание на то, что на четвертый день во всех образцах с «живым» бульоном появился осадок, причем в образце с опущенным пальцем осадка оказалось больше.

В пробирках с бульоном из кубика изменения начали происходить на поверхностной пленке каждого из образцов, но в образце с опущенным пальцем на поверхности начала образовываться плесень.

Получается, что микроорганизмы присутствуют во всех четырех пробах, но в разном количестве (это еще раз подтверждает тот факт, что на наших руках обитают бактерии), однако в пробирках с опущенным пальцем процесс размножения микроорганизмов происходит в несколько раз быстрее.

После этого я взяла несколько капель жидкости из пробирок и попыталась рассмотреть их под микроскопом, насколько это оказалось возможным. В образцах с «живым» и «неживым» бульоном были обнаружены разные виды микроорганизмов.

Вывод: во всех образцах подтвердился факт наличия в жидкости микроорганизмов. Странным мне показался факт размножения микроорганизмов в среде с консервантом. Ведь считается, что в таких условиях микроорганизмы не должны выживать, консервант их должен убивать. Объяснить такое поведение микроорганизмов я могу лишь истечением срока годности бульонного кубика, ведь врачи не рекомендуют употреблять продукты питания после истечения срока годности!

Определение благоприятных условий для развития и размножения бактерий.

Взяла два кусочка хлеба и поместила их в плотно закрытые полиэтиленовые пакеты. Один положила в холодильник, другой – в теплое место, на подоконник, где всегда солнышко.

через три дня я заметила, что на пакете, с опытным образцом, который находился в тепле, выступили капли воды, а еще через день стали образовываться пятна плесени (Таблица 3 ).

Таблица 3

Наблюдение за хлебом
(Опыт 5)

Вывод: на корочке хлеба появилась плесень – мукор . Микроорганизмы вызывают порчу продуктов! Плесень может развиваться только в теплом и влажном месте, особенно богатом питательными веществами, а сухость воздуха и низкая температура являются главными препятствиями для развития плесени.

Следовательно, с большой долей вероятности можно предположить, что и «плохие» микроорганизмы предпочитают развиваться в теплой влажной среде.

Наличие микроорганизмов на немытых и мытых руках.

В две чистые чашки положила питательную среду: вымытый клубень картофеля очистила, разрезала пополам, и вымочила 2-3 ч. в растворе соды (1 ч.л./500 мл. воды), затем сварила его и разрезала на лом-тики. Прикоснулась немытыми руками к одному пласту картофеля, а затем мытыми к другому. Закрыла чашки крышками, и поставила в темное теплое место на 4 дня.

через четыре дня на ломтике картофеля, к которому прикасалась грязными руками, вы-росли бактерии (Таблица 4 ).

Таблица 4

Наличие микроорганизмов на немытых и мытых руках
(Опыт 6)

пробы Наименование исследуемого объекта 1 день (02.01.2017) 3 день (04.01.2017) 5 день (06.01.2017)
1 Ломтик картофеля (чистые руки) - при взаимодействии пигмента с щелочью (мыло) образуется оранжево-желтая окраска, поэтому на данном образце появился налет желтого цвета, а красного пигмента не обнаружено -
2 Ломтик картофеля (грязные руки) - появились пятна желто-оранжевого цвета (кокки), и красный пигмент характерный для крахмалсодержащих продуктов продигиозин , который вырабатывают бактерии «чудесной крови», не патогенны, но продукты их жизнедеятельности являются токсичными пятна плесени стали крупнее и ярче

Вывод: микроорганизмы не любят чистоту, мыло их убивает!

Наличие микроорганизмов на предметах.

Взяла ватной палочкой пробу с перил лестничной клетки своего подъезда. Образец поместила в пробирку с питательной средой («живой» бульон), и убрала в теплое, темное место.

через один день произошло изменение цвета, что говорит о присутствии вредных бактерий, а через три дня выпал белый творожистый осадок - колонии бактерий (Таблица 5 ).

Таблица 5

Наличие микроорганизмов на предметах
(Опыт 7)

Вывод: на предметах вокруг нас очень много различных микроорганизмов, не всегда полезных, поэтому необходимо мыть руки!

Проделанные опыты подтверждают факт существования вокруг нас огромного количества различных микроорганизмов, которые, к сожалению, не всегда бывают «хорошими».

Микроорганизмы, или микробы - это живые существа микроскопически малых размеров, которыми насыщена окружающая человека среда: вода, почва, воздух, продукты питания, жилища человека и предприятия.

Наука микробиология изучает строение, обмен веществ и условия существования микроорганизмов, а также их роль в жизни человека. Микроорганизмы имеют сходство с животными и растениями, так как находятся на границе животного и растительного миров. Они очень разнообразны по форме и свойствам, но общим признаком всех являются малые размеры. Поэтому для изучения их применяются особые методы. Из-за малых размеров микроорганизмы невозможно увидеть невооруженным глазом. Знакомство человека с ними началось с изобретения микроскопа. Первые микроскопы были весьма примитивны, состояли из нескольких вручную изготовленных линз и давали увеличение до 300 раз; по существу, это были лупы. Однако даже такие приборы позволяли рассмотреть форму некоторых микроорганизмов.

Голландский естествоиспытатель Антон Лёвенгук (1632-1723), собственноручно шлифовавший линзы и собиравший простейшие микроскопы, с удивлением обнаруживал микроорганизмы во всех объектах, которые рассматривал: дождевой воде, настое сена, зубном налете и др. Он с большой точностью описал формы микроорганизмов, которых увидел под микроскопом (простейшие, бактерии, грибы и дрожжи), назвал их инфузориями и описал в книге «Тайны природы». Лёвенгука по праву считают основоположником описательной микробиологии.

Со времени открытия Лёвенгука многие ученые стремились глубже изучить свойства микроорганизмов и использовать полученные знания в хозяйственной деятельности. Огромны заслуги перед человечеством знаменитого французского ученого Луи Пастера (1822-1895). Начав работу химиком, Пастер впоследствии заинтересовался обменом веществ у микроорганизмов. Пастер обратил внимание на то, что на поверхности земли благодаря наличию микроорганизмов происходят значительные химические превращения: микроорганизмы не только разрушают мертвые органические остатки животных и растений, но и очищают от них почву и водоемы.

Пастер доказал, что в результате деятельности отдельных видов микроорганизмов происходит порча пищевых продуктов. Одновременно он обнаружил, что микроорганизмы производят и полезную для человека работу. Исследуя процессы брожения, Пастер установил, что каждое брожение (спиртовое, уксуснокислое и молочнокислое) вызывается специфическим возбудителем. В своем труде «Исследование о брожении» он рассматривает ряд бродильных производств, приписывая осадку на дне бродильного чана главную роль в процессе брожения. До Пастера, например, осадки в винных бочках считали отбросами и называли «экскрементами вина». Исследования Пастера оказали большую помощь виноделам Франции в борьбе с микроорганизмами, вызывающими болезни вин, и он по праву считается родоначальником технической микробиологии. Позже Пастер увлекся бактериологией и разработал учение о специфичности возбудителей инфекционных заболеваний человека, которые тоже оказались микробами, а также создал прививку против бешенства.

Русские ученые сыграли большую роль в развитии микробиологии. Среди них наиболее известны Л. С. Ценковский, И. И. Мечников, Н. Ф. Гамалея, Д. И. Ивановский, С. Н. Виноградский, В. Л. Омелянский и др.

Л. С. Ценковский (1828-1877) исследовал различные группы микроорганизмов, их свойства и генетическую связь друг с другом. Он был первым, кто приготовил и применил в России вакцину против сибирской язвы овец.

И. И. Мечников (1845-1916) получил всемирное признание за разработку теории иммунитета. Она объясняет механизм невосприимчивости организма к инфекционным заболеваниям. После дальнейшей разработки эта теория легла в основу учения об антибиотиках.

Н. Ф. Гамалея (1858-1949) изучал многие вопросы медицинской микробиологии. В 1886 г. Н. Ф. Гамалея организовал в Одессе первую в России пастеровскую станцию по прививкам против бешенства.

Д. И. Ивановский (1864-1920) первым открыл вирусы, вызывающие болезни растений. Он является родоначальником науки вирусологии, которая в настоящее время получила широкое развитие и применение.

Большой вклад в развитие микробиологии внес С. Н. Виноградский (1856-1953), разработавший метод элективных (избирательных) культур. Используя его, С. Н. Виноградский выделил группу нитрифицирующих бактерий, открыл особый тип питания у микробов - хемосинтез. Он обнаружил также важнейший процесс - фиксацию атмосферного азота анаэробными бактериями, - имеющий огромное значение в круговороте веществ в природе.

Ученик С. Н. Виноградского - В. Л. Омелянский (1867-1928) многое сделал для развития микробиологии. Он создал первый русский учебник и практическое руководство по микробиологии. Грибные заболевания растений исследовали М. С. Воронин (1838-1903) и А. А. Ячевский (1863-1932), положившие начало науке фитопатологии.

В изучение процессов брожения большой вклад внесли русские ученые Л. А. Иванов, С. П. Костычев (1877-1931) и А. Н. Лебедев (1881-1938). В 1930 г. на основе работ С. П. Костычева и В. С. Буткевича (1872-1942) в СССР было организовано производство молочной кислоты с помощью микроскопических грибов. Труды Я. Я. Никитинского (1878-1941) и его учеников положили начало развитию микробиологии консервного производства и хранения скоропортящихся пищевых продуктов.

В нашей стране микробиология пищевых продуктов получила широкое развитие. Как наука микробиология разделяется на самостоятельные разделы.

Общая микробиология изучает различные стороны жизнедеятельности микробов, роль их в круговороте веществ в природе и возможность применения в практической деятельности человека. Наиболее важной функцией микробов для жизни на земле является их участие в круговороте углерода. Равновесие между образованием органических соединений растениями и их распадом поддерживают микроорганизмы. Общая микробиология изучает круговорот и других жизненно важных элементов в природе, связанных с жизнедеятельностью микроорганизмов: азота, железа, серы и др.

Техническая микробиология является важной прикладной наукой. Она изучает различные микроорганизмы с точки зрения использования их биохимической деятельности для получения ценных продуктов. Оказалось, что некоторые дрожжи, бактерии и плесневые грибы в процессе своей жизнедеятельности образуют много полезных веществ. Благодаря исследованию ряда ученых в настоящее время разработаны технологические процессы для использования биохимической деятельности микроорганизмов. Так, вырабатывают пиво, вино, сыр, хлеб, спирт, органические кислоты и т. д. Успех этих производств зависит от правильно подобранных культур микроорганизмов и режимов их выращивания. Важным условием получения продуктов высокого качества является применение чистых культур микроорганизмов - культур, которые выведены из одной клетки и обладают рядом производственно-ценных свойств.

В последние десятилетия освоено производство многих новых ценных продуктов микробиального происхождения: антибиотиков, витаминов, ферментов, аминокислот и др.

Продуцентами их являются дрожжи, бактерии, плесневые грибы и другие микроорганизмы. Возникла и стала быстро развиваться новая отрасль народного хозяйства - микробиологическая промышленность.

Сельскохозяйственная микробиология разрабатывает способы повышения плодородия почвы с помощью микроорганизмов.

Медицинская микробиология изучает болезнетворные (патогенные) микроорганизмы, методы предупреждения болезней и их лечение. К ней примыкают санитарная и ветеринарная микробиология, эпидемиология и вирусология.

Санитарная микробиология - это наука, разрабатывающая оздоровительные мероприятия для предупреждения различных заболеваний человека. Санитарная микробиология находится на стыке с микробиологией, эпидемиологией и гигиеной и имеет профилактическую направленность. Вначале санитарная микробиология составляла часть гигиены, но в 30-е годы благодаря трудам советских ученых А. Л. Миллера, И. Е. Минкевича, В. И. Тец сформировалась как самостоятельная наука.

Водная микробиология изучает микроорганизмы, населяющие водоемы. Она занимается также вопросами загрязнения вод промышленными отходами, очищения вод с помощью микроорганизмов и др.

Кроме полезных микроорганизмов, которые люди научились использовать в своих целях, в природе существует огромное количество вредных. Попадание их в пищевые продукты и полуфабрикаты нежелательно и опасно, поскольку некоторые микроорганизмы являются возбудителями пищевых инфекций и отравлений. Доброкачественность пищевых продуктов во многом зависит от вида и количества микроорганизмов, находящихся в окружающей среде, сырье и на производственном оборудовании. Качество продукции определяется тем, насколько удалось предотвратить микробиальное обсеменение растительного и животного сырья при транспортировании, хранении, технологической обработке. Поэтому на пищевых предприятиях постоянно контролируют микробиологическое состояние производства, что позволяет своевременно обнаружить посторонние и вредные микробы. В этих целях наряду с химической лабораторией устраивают микробиологическую, которая имеет специальное оборудование.

Автоклавы предназначены для получения стерильных питательных сред, на которых выращивают микроорганизмы. В этих аппаратах, работающих под давлением, стерилизующим фактором является влажный пар при температурах выше 100 °С. Стеклянная посуда (пробирки, пипетки, чашки Петри, бродильные трубки для определения активности брожения и др.) стерилизуется в сушильных шкафах сухим паром при 160-170 °С.

Микроскопы позволяют рассматривать клетки микроорганизмов, невидимые невооруженным глазом. При этом для выявления строения клеток используют специальные краски. Кроме основного оборудования необходимы лабораторные принадлежности: петли для проведения посевов микроорганизмов на поверхности питательных сред, иглы для посевов в глубину сред и др. В тех отраслях, где применяются культурные микроорганизмы, необходимо специальное оборудование и посуда для разведения чистых культур.

Для предупреждения попадания вредных микробов в технологические емкости, полуфабрикаты и готовую продукцию разработаны профилактические мероприятия и санитарные правила. Вредные микробы подвергаются также активному уничтожению при проводимых на предприятиях дезинфекциях.

Важным средством борьбы с микробиальной обсемененностью на предприятиях является переработка сырья, минимально зараженного микробами, содержание в чистоте оборудования и тары и строгое соблюдение установленных технологических режимов, которые обеспечивают условия, неблагоприятные для размножения посторонней микрофлоры.

Для изучения микробов необходимы соответствующие лабораторная обстановка и оборудование. Помещение для лабораторий подбирают просторное, светлое, чистое и изолированное. Работа в лаборатории требует особой осторожности, так как приходится работать с заразным материалом. Микроскопирование. Вследствие очень малых размеров микроорганизмы изучают с помощью специальной аппаратуры - микроскопов.

Микроскоп состоит из двух частей: механической и оптической. Механическая часть микроскопа состоит из штатива, тубyca 7 (рис. 6), «револьвера» 2, предметного столика 4, микрометрического 10 и макрометрического 11 винтов. К оптической части относятся объективы 3, окуляры, зеркала 6, осветительный аппарат 5 (конденсор). Оптическая часть - наиболее важная часть микроскопа. Под предметным стеклом находятся зеркало и конденсоры. Зеркало служит для отражения (???) направления световых лучей через конденсор в объектив. Конденсор состоит из нескольких линз, которые собирают отраженные от зеркала лучи на уровне исследуемого предмета. На нижней поверхности осветительного прибора укреплена ирис-диафрагма, с помощью которой можно уменьшать или увеличивать освещение изучаемого предмета. Объектив состоит из нескольких линз, заключенных в общую металлическую оправу, на которую наносится цифра, указывающая увеличение. Окуляр состоит из двух линз и дает увеличение изображения, которое получается (???) от объектива. На окуляре также имеется цифра, указывающая увеличение. Общее увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра.
Разрешающая способность микроскопа ограничивается длиной световой волны.

Имеются микроскопы более усовершенствованных конструкций. Так, в бинокулярных микроскопах предметы рассматриваются обоими глазами, благодаря чему получается более рельефное изображение объектов. Сконструированы ультрамикроскопы, предназначенные для рассматривания объектов, имеющих размеры менее 0,2 мк. Предметы в этих микроскопах освещают не проходящими лучами, как в обычном микроскопе, а боковыми, исходящими от сильного источника света.

Электронный микроскоп, дающий увеличение от 20 000 до 200 000 раз и более, был изобретен в 1932 году. При его помощи можно изучать такие микроорганизмы, как вирусы, имеющие размеры в несколько миллимикрон. В этих микроскопах через изучаемый предмет пропускается поток быстролетящих электронов, причем изображение получается на специальном экране.
В последние годы, кроме описанных выше, стали внедряться практику также люминесцентные фазово-контрастные микроскопы, применение которых расширило возможности изучения микроорганизмов. Так, при люминесцентной микроскопии изучаемый предмет освещается ультрафиолетовыми лучами от специального источника. При этом некоторые микробы, поглощающие энергию, могут затем давать видимое цветное (зеленое, желтое, фиолетовое) излучение. Таким образом, в отличие от обычной микроскопии в люминесцентном микроскопе рассматривают объекты в излучаемом ими свете. В фазово-контрастном микроскопе более четко изучается внутренняя структура живых клеток в процессе жизнедеятельности и функция движений. Это достигается с помощью специально устроенных фазовых (кольцевых) объективов и конденсора. Они изменяют фазу волны проходящего света, резко повышая контрастность изображения. Питательные среды. Для исследования разнообразных свойств микробов их выращивают на питательных средах. Чтобы микробы могли размножаться, такая среда должна содержать достаточное количество питательных веществ, воду, минеральные соли и источники азота и углерода. Особое внимание обращают на то, чтобы среда для выращивания микробов была стерильной, так как загрязнение питательной среды делает ее непригодной для использования.

Различают естественные и искусственные питательные среды. В качестве естественных питательных сред применяют молоко, желчь, картофель, морковь, яйца и др. .Искусственные питательные среды готовят в основном из мясных или растительных настоев, добавляя в них различные азотистые продукты, углеводы и соли.

Подопытные животные. Роль отдельных микробов в возникновении заболеваний, изучение характера инфекционного процесса, метода лечения и профилактики многих инфекционных заболеваний были выяснены благодаря широкому использованию в микробиологии метода экспериментального заражения подопытных животных.

Из лабораторных животных в микробиологической практике наиболее широко используют морских свинок, кроликов, белых мышей, белых крыс, иногда - обезьян, мелкий и крупный рогатый скот, кошек, собак и редко птиц (голубей, кур). Выбор того или другого животного для исследования зависит от двух условий: во-первых, животное должно быть восприимчиво к данной инфекции, во-вторых, в естественных условиях у него не должно быть данной инфекции. Поэтому для изучения каждой инфекции используют отдельный вид животного. Например, при изучении туберкулеза и дифтерии подопытными являются морские свинки, при изучении бешенства - кролики и др.

Различают следующие основные методы: микроскопический, микробиологический, экспери­ментальный, иммунологический.

1.Микроскопический - изучение микробов в окрашенном и неокрашенном (нативном) состоянии с помощью различных типов микроскопов. Метод позволяет определить форму, размеры, расположение, структурны элементы и отношение к окраске микробов. Иногда по характерным морфологическим особенностям можно определить вид микроба (грибов, простейших, некоторых бактерий).

    Микробиологический - (бактериологический, культурный) - посев материала на питатель­ные среды для выделения чистой культуры и определения ее вида (идентификации). Культурой в микробиологии называют совокупность микроорганизмов. Чистая культура - скопление микробов одною вида, выращенных на питательной среде. Штамм - чистая культура, выделенная из кон­кретного источника в определенное время, (например, штамм Shigella flexneri №8, выделенный от больного К. 20 сентября). Клон - генетически однородная чистая культура, полученная в результате бесполого размножения I клетки (используется при изучении микробных популяций, в гене­тических экспериментах).

    Экспериментальный (биологический) - заражение микробами лабораторных животных. Метод позволяет:

    выделить чистую культуру микробов, плохо растущих на питательных средах;

    изучить болезнетворные свойства микроба;

    получать иммунобиологические препараты для специфической профилактики, диагностики и лечения.

4. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

В ответ на поступление микробных частиц (антигенов, АГ) иммунная система организма вырабатывает специфические белковые молекулы - антитела (AT), способные вступать с данным ан­тигеном в специфическое взаимодействие с образование комплекса АГ+АТ. Метод основан па выявлении таких комплексов. Выделяют 2 разновидности метода: серологический метод и аллергический метод. Серологический метод основан на выявлении AT в крови или других жидкостях с помощью известных микробных АГ (диагностикумов). Аллергический метод основан на выявлении повышенной чувствительности (аллергии) к повторному поступлению в организм микробного аллергена (АГ). Наличие иммунного ответа (в виде AT или аллергии) свидетельствует о предшествующей встрече с этим микробом: возможно, человек переболел соответствующей ин­фекцией раньше, был вакцинирован или болен в настоящее время.

Часто по образованию комплекса АГ+АТ с известными AT определяют вид чистой культуры неизвестного микроба, полученной в ходе исследования микробиологическим методом (идентифи­кация по антигенной структуре).

Морфология и физиология микробов микроскопический метод исследования

Световой микроскоп с иммерсионной системой

Для изучения микробов в микроскопе требуется увеличение примерно в 1000 раз. Поэтому используется микроскопы с иммерсионной системой ("иммерсио" - погружение) В состав иммер­сионной системы входит иммерсионный объектив (х 90) и иммерсионное масло, которым заполняют разрыв между изучаемый предметом и передней линзой иммерсионного объектива. Поскольку по­казатели преломления стекла и масла близки, это позволяет избежать потери световых лучей вследствие их отклонения, и, тем самым, создать оптимальную освещённость поля зрения. Необ­ходимость в концентрации светового пучка обусловлена также и чрезвычайно малым диаметром передней линзы иммерсионного объектива. При микроскопировании необходимо помнить, что объективы "сухой системы" не предназначены для погружения в масло, которое может привести их в негодность. Микроскопия с иммерсионной системой позволяет изучать убитые микробы в ок­рашенном состоянии (их форму, размеры, взаимное расположение, строение бактериальной клет­ки) и дифференцировать одни микробы от других.

Способность микробов окрашиваться различными методами называют тинкториальными свойствами.

В некоторых случаях (изучение морфологии грибов, простейших, других относительно круп­ных объектов в живом неокрашенном состоянии) используется световой микроскоп с затемнённым полем зрения (объективы х 40 или х 8) Для микроскопии готовят препараты "раздавленная капля" или "висячая капля".

Измерение микробов.

Изучение морфологических признаков микробов (длина, ширина, форма) нередко проводят для определения их вида. Размеры клеточных микроорганизмов варьируют от долей микрометра (мкм, 10 -6 м) до нескольких десятков микрометров. Мелкие клетки бактерий имеют размеры 1-2, крупные от 8 до 12 мкм и более. Для измерений используют окуляр-микрометр (встроенную в оку­ляр прозрачную линейку).

Темнопольный микроскоп (ультрамикроскоп)

Особенностью этого микроскопа является наличие конденсора темного поля (параболоид-конденсатора), который концентрирует световой пучок и направляет его на исследуемый объект сбоку. Ввиду того, что прямые лучи отсекаются центральной диафрагмой конденсора, а косые лучи, выходящие по периферии диафрагмы, не попадают в объектив, ультрамикроскоп имеет темное поле зрения. При освещении косыми лучами живых и неживых частиц, в т.ч. микробов, часть от­раженных лучей попадает в объектив; при этом наблюдается яркое свечение частиц на темном фоне. Темнополъную микроскопию используют для изучения подвижности микробов, наблюдения очень тонких объектов (спирохет) в препарате "раздавленная капля".

Фазово-контрастный микроскоп

Эта разновидность светового микроскопа позволяет изучать структуру живых неокрашенных микробов (прозрачных объектов). При прохождении света через неокрашенные микробные клетки, в отличие от окрашенных, амплитуда световых волн не меняется, а происходит лишь их изменение по фазе, что не улавливается глазом человека. Сдвиг по фазе происходит при прохождении участ­ков с большей оптической плотностью (рибосомы, нуклеоид). Специальные приспособления: фазовый конденсор и объективы с фазовыми кольцами позволяют преобразовать невидимые фазовые изменения в видимые амплитудные.

Люминесцентный микроскоп

Принцип работы этого микроскопа основан на явлении люминесценции. Для получения изо­бражения объектов их обрабатывают флюорохромами, которые при возбуждающем облучении ко­ротковолновой частью спектра светятся цветами с большей длиной волны (зеленым, оранжевым и др.). В люминесцентном микроскопе изучают как живые, так и убитые микробы (с "сухой" или иммерсионной системами). Люминесцентная микроскопия позволяет получить контрастное цвет­ное изображение, обнаружить малое количество микробов, изучить их структуру и химический со­став, использовать метод иммунофлюоресценции.

Электронный микроскоп

Этот прибор отличается от световых микроскопов значительно большей разрешающей спо­собностью (около 0,001 мкм) за счет использования вместо света пучка электронов, а вместо стек­лянных оптических - электромагнитных линз. В электронном микроскопе изучают вирусы, ультраструктуру убитых макроорганизмов.

Приготовление препарата для микроскопического исследования

Окраска по Граму.

1 этап - приготовление мазка.

Предметное стекло обжигают в пламени газовой горелки. Восковым карандашом отмечают пределы будущего мазка в виде окружности диаметром 1-2 см. и кладут стекло на стол. Прокален­ной петлёй наносят в середину кружка небольшую каплю стерильного изотонического раствора хлорида натрия (ИХН). Затем в эту каплю вносят небольшое количество культуры бактерий, тща­тельно эмульгируют и распределяют тонким слоем в пределах кружка. Мазки из бульонных куль­тур готовят без предварительного нанесения ИХН.

2 этап - высушивание.

Стекло оставляют на воздухе до исчезновения влаги.

3 этап - фиксация.

Фиксацию проводят для того, чтобы убить микробы, прикрепить их к стеклу, повысить их восприимчивость к красителям. Для фиксации предметное стекло (мазком вверх) трижды накла­дывают на пламя горелки на 2-3 секунды с интервалом 4-6 секунд. Мазки из гноя, крови, мокроты, отечной жидкости фиксируют погружением в фиксирующие жидкости (ацетон, смесь Никифоро­ва). Такая фиксация позволяет избежать грубых деформаций объекта исследования.

4 этап - окраска.

Различают простые и сложные (дифференцирующие) способы окраски. Простые способы по­зволяют судить о величине, форме, локализации и взаимном расположении клеток. Сложные спо­собы позволяют установить структуру микробов и часто их неодинаковое отношение к красите­лям. Примером простых способов может служить окраска фуксином (1-2 минуты), метиленовым синим или кристаллвиолетом (3-5 минут), а сложных - окраска по Граму, Романовскому-Гимзе, Циль-Нильсену.

Дифференцирующий метод Грача

После окраски этим методом одни бактерии, окрашиваются в темно-фиолетовый цвет (грамположительные, Гр+). другие - в бордово-красный (грамотрицательные, Гр-). Сущность этого способа окраски состоит в том, что Гр+ бактерии прочно фиксируют комплекс из генцианвиолета и йода, не обесцвечиваясь этанолом. Гр- бактерии после обесцвечивания докрашивают фуксином.

Этапы окраски по Грамму

Этап окраски

Гр + бактерии

Гр - бактерии

Генцианвиолет (2 мин.)

фиолетовый

фиолетовый

Раствор Люголя (1 мин.) - закрепление окраски

фиолетовый

фиолетовый

Этанол + йод (30 сек.) - избират. обесцвечивание Гр- бактерий

фиолетовый

обесцвечивание

Фуксин (1 мин.), докрашивание Гр- бактерий

фиолетовый

бордовый

Промывание водой

Основные формы бактерий

Шаровидные

Палочковидные

микрококки (одиночные)

собственно бактерии

спириллы

диплококки (пары)

спорообразующие

спирохеты

стрептококки (цепочки)

(бациллы, клостридии)

кампилобактеры

тетракокки (4 клетки)

изогнутые палочки (вибрионы)

сарцины (тюки, пакеты)

стафилококки (гроздья)

Первоначально разглядывание маленьких живых существ в микроскоп было своего рода забавой для пытливых умов. Прошло немало времени, прежде чем исследование бактерий было поставлено на научную основу. Благодаря этому ученые смогли связать наличие живых микроорганизмов с возникновением болезней и эпидемий.

В наши дни развитие науки вообще и медицины в частности уже невозможно представить без микробиологии. Серьезные научные исследования проводят в лабораториях на специальном оборудовании, но повторить некоторые опыты можно и в домашних условиях.

О существовании бактерий сейчас известно каждому ученику начальной школы, но так было далеко не всегда. Впервые увидеть бактерии смог ученый из Нидерландов Антони ван Левенгук в 1674 г. Чтобы провести исследование и изучение бактерий, ему пришлось самостоятельно разработать и создать первый в истории человечества микроскоп.

Немного позже, в 1828 году, появилось название «бактерия» (от греч. «маленькая палочка»). Слово ввел в обиход немецкий ученый Христиан Эренберг.

Еще позже француз Луи Пастер и немец Роберт Кох, продолжая работу по изучению микроорганизмов, связали возникновение болезней с наличием в организме человека или животного бактерий. За создание бактериологической теории возникновения болезней Роберт Кох в 1905 году был награжден Нобелевской премией.

В XIX веке мир уже понимал, какую опасность таят патогенные бактерии, но организованно бороться с ними люди научились не сразу. Только в 1910 году Рафаэль Эрлих создал первый антибиотик.

Зачем нужны исследования микробов

Исследование живых микроорганизмов необходимо для обнаружения и идентификации возбудителя болезни в организме человека, животного или в окружающей среде. Микробиологическая лаборатория изучает патогенные бактерии, устанавливает их вид и проверяет на устойчивость к антимикробным препаратам.

Микробиологическое исследование необходимо не только для установления точного диагноза (анализы крови, мочи, кала, слизи), но и для определения безопасности для человека окружающей среды. Например, санитарно-эпидемиологическая служба в обязательном порядке исследует продукты, предназначенные для реализации населению.

Отбор проб для исследования

Чтобы получить представление о состоянии человека, животного или окружающей среды, нужны образцы материала (пробы), с которыми и будет работать лаборатория. Для людей и животных это будут различные анализы (кровь, моча, кал) или мазки (слизь), а для исследования продуктов или среды используют небольшое количество самого продукта (мясо, молоко и молочные продукты) или среды.

Пробы для каждого вида исследований берут по определенной методике, но есть несколько общих правил. Нужно использовать стерильную посуду и, по возможности, проводить отбор проб в асептических (обеззараженных) условиях. В лабораторию пробы доставляют как можно быстрее, при необходимости в холодильных боксах. Соблюдение этих условий особенно необходимо в медицине.

Некоторые образцы могут быть опасными для здоровья, поэтому особенно важно правильно оформить сопроводительную документацию.

Методы исследования микроорганизмов

Итак, пробы взяты и доставлены в лабораторию. Думаете, теперь достаточно заглянуть в микроскоп чтобы разобраться что к чему? На самом деле все гораздо сложнее. Есть несколько основных методов определения живых бактерий.

Бактериологическим называют метод исследования бактерий (посев) в различных биологических образцах – материале от заболевшего человека или животного, образцах внешней среды, кормах, мясе, молоке и т.д.

Микроскопия, т.е. изучение под микроскопом лабораторного образца, дает возможность определить общее число микроорганизмов, их форму, размер и строение (их морфологию).

Но нельзя просто сунуть под микроскоп пробирку с молоком или мочой. Чтобы изучить живые (нефиксированные) бактерии, используют препараты, подготовленные одним из двух методов:

  1. Метод «раздавленной капли». На предметное стекло наносят каплю материала и накрывают покровным. Жидкость должна быть распределена по всей поверхности, но не выступать за границу покровного стекла.
  2. Метод «висячей капли» используют для живых микроорганизмов при возможности роста колонии. При таком способе можно наблюдать за объектом несколько дней. На покровное стекло капают исследуемый материал, быстро переворачивают каплей вниз и аккуратно укладывают на подготовленное предметное стекло с лункой посередине. Края лунки заранее смазывают вазелином для полной изоляции образца. Затем стекла переворачивают еще раз и получают свободно висящую каплю.

Для исследования патологического (опасного для здоровья) материала используют мазки-отпечатки (из органов, тканей) или тонкие мазки из другого материала. Пробы высушивают, фиксируют (чаще всего пронося образец над горелкой) и окрашивают.

Микроскопия осадка

При некоторых методах исследования изучают не только сам лабораторный материал, но и выпадающий осадок. Этот метод применяют при проведении анализа мочи.

Общий анализ мочи нужен для диагностирования и контроля многих заболеваний. Морфологическое исследование осадка мочи проводят следующим образом: в пробирку наливают 10-12 мл мочи, помещают в центрифугу (скорость 1500-2000 об/мин) на 10-15 мин. Оставшуюся мочу сливают, а осадок перемешивают.

При проведении микроскопии осадка мочи определяют наличие в нем элементов клетки – эритроцитов, лейкоцитов, цилиндров, солей и клеток эпителия.

Выращивание культур микроорганизмов

Культурой бактерий называют совокупность микробов одного вида. Чтобы вырастить культуры бактерий, проводят посев материала на питательную среду. Например, дифтерийную палочку открыли и вырастили в чистой культуре уже 100 лет назад.

Для различных видов бактерий есть определенные комфортные условия (питание, температура, влажность и т.д.), в которых хорошо размножаются основные бактерии, но гораздо хуже посторонние микробы.

Засеянные лабораторные чашки и пробирки отправляют в термостат, где и выдерживают при необходимой температуре один-два дня, а иногда (туберкулез) и до трех-четырех недель. Затем проводят сравнение морфологии с известными признаками бактерий, описанными в классификационных схемах или определителях микробов.

Можно ли вырастить бактерии в домашних условиях

Детям будет любопытно попробовать вырастить собственные колонии бактерий в домашних условиях. Кроме того, такой опыт поможет им на уроках биологии в школе.

Бактерии есть повсюду, на всех поверхностях, в воде, воздухе, почве. Проще всего в домашних условиях использовать микроорганизмы, живущие на кухонных поверхностях или в туалете. Для этого нужна чашка Петри, питательная среда (агар-агар или мясной бульон) и ватный тампон.

Чашку Петри нужно тщательно вымыть, поместить в нее небольшое количество агар-агара или несколько капель мясного бульона. Ватным тампоном протрите любую поверхность на выбор и окуните тампон в питательную среду. Плотно накройте чашку Петри и поставьте в теплое место, где и оставьте ее на 2 – 3 дня. Каждый день наблюдайте за происходящим, можно делать рисунки или фотографии. Покажите детям, что интересные научные опыты можно ставить и в домашних условиях!

Пастеризация молока

Это тоже интересный опыт, который можно провести в домашних условиях, только направленный на уничтожение бактерий.

Французу Луи Пастеру мир обязан появлением молока длительного хранения (пастеризованного). Этот ученый разработал процесс для уничтожения микроорганизмов, находящихся в жидкости. Правда, Пастер обрабатывал вино и пиво, а не молоко.

Пастеризация молока заключается в нагревании его до температуры, близкой к точке кипения, и выдерживания в таких условиях. При пастеризации молока, в отличие от кипячения, не изменяются его вкус, запах и консистенция. Это простой и дешевый способ обеззараживания молока. Кроме того, все кисломолочные продукты теперь тоже изготавливают из предварительно пастеризованного молока.

На обычной кухне можно без труда провести пастеризацию молока. Для этого емкость с молоком ставят на паровую баню (в кастрюлю с горячей водой) и при постоянном помешивании доводят до температуры 63 — 65⁰С. Через полчаса емкость с молоком переносят в холодную воду, чтобы быстрее снизить температуру.

Носители бактерий

Кроме безобидных микроорганизмов, живущих рядом с нами, бывают и затаившиеся враги. Микробы, о которых мы не знаем, как бомба с часовым механизмом, живут в нашем теле и могут «взорваться» в любую минуту.

Болезнетворные бактерии и организм человека какое-то время находятся в равновесии, нарушить которое может усиление или ослабление иммунитета. В первом случае защитная система организма побеждает болезнь, носительство как процесс прекращается. В противном случае ослабление иммунитета приводит к заболеванию.

Виды носительства:

  1. Здоровое носительство. Болезнетворные бактерии существуют в клетках внешне здорового человека. Как правило, этот процесс длится недолго и сопровождается небольшим количеством патогенных бактерий – чаще всего дифтерийной палочки, возбудителей скарлатины и дизентерии.
  2. Инкубационное носительство наблюдается при всех инфекционных болезнях, но не всегда означает, что возбудитель выделяется в окружающую среду.
  3. Острым носительство называют в том случае, когда выделение болезнетворных микробов продолжается от нескольких дней до нескольких недель после того, как человек перенес заболевание. Если процесс длится дольше установленного срока, носительство считается хроническим.

Носительство можно определить только методами лабораторного исследования, выделяя болезнетворные микроорганизмы из мочи, крови, слизи, фекалий. Лечат носителей в стационаре при помощи антибиотиков и вакцинами.

Дифтерийная палочка

Одним из возбудителей, передаваемых носителем, является дифтерийная палочка. Этот микроб имеет множество форм, но хорошо определяется с помощью окрашивания анилиновым красителем.

Дифтерийная палочка

Дифтерийные бактерии растут при свободном доступе кислорода и температуре от 15 до 40⁰С. Хорошо размножаются в среде, содержащей кровь. То есть в организме человека есть все необходимые условия для роста дифтерийных палочек.

Распространяется дифтерийная бактерия также воздушно-капельным путем и представляет большую угрозу для здоровья. При дифтерии возникает острое воспаление верхних дыхательных путей и отравление организма токсинами, выделяемыми дифтерийной палочкой. Это последнее обстоятельство приводит к серьезным поражениям сердечно-сосудистой и нервной системы.

Для проведения бактериоскопии с помощью сухих ватных тампонов берут слизь и пленки из глотки. Анализ должен быть доставлен в лабораторию за три часа или быстрее. Если это невозможно, на месте проводят посев в чашку Петри и уже его отправляют на исследование. Результат появляется через 24 или 48 часов.

Процесс носительства дифтерийной палочки поддерживает циркуляцию заболевания и сохраняет угрозу эпидемии. Основным способом сдерживать рост дифтерийных возбудителей остается активная иммунизация.

Мир бактерий огромен и удивителен. Исследуя микроорганизмы, мы получаем возможность раскрыть многие тайны природы, позаботиться о своем здоровье и сохранить чистоту окружающей среды.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.