Цифровой ШИМ регулятор оборотов коллекторного двигателя. Цифровой ШИМ регулятор оборотов коллекторного двигателя Шим регулятор для коллекторных двигателей постоянного тока

Широкое применение таймер 555 находит в устройствах регулирования, например, в ШИМ - регуляторах оборотов двигателей постоянного тока.

Все, кто когда - либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ - регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Рисунок 1. Схема ШИМ - регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.


Рисунок 2. Принципиальная схема набора ШИМ - регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент - диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку - двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой - лампой накаливания или каким-либо нагревательным элементом.


Рисунок 3. Печатная плата набора ШИМ - регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Рисунок 4. Внешний вид набора ШИМ - регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

Рисунок 5.

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Рисунок 6.

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки - лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере 555.

Драйверы для транзисторов MOSFET на таймере 555

Еще одно применение интегральный таймер 555 нашел в трехфазных инверторах, или как их чаще называют частотно - регулируемых приводах. Основное назначение «частотников» - это регулирование частоты вращения трехфазных асинхронных двигателей. В литературе и в интернете можно найти немало схем самодельных частотных приводов, интерес к которым не пропадает до настоящего времени.

В целом идея такова. Выпрямленное сетевое напряжение с помощью контроллера преобразуется в трехфазное, как в промышленной сети. Но частота этого напряжения может меняться под воздействием контроллера. Способы изменения различны, - просто от ручного управления до регулирования системой автоматики.

Блок схема трехфазного инвертора показана на рисунке 1. Точками A,B,C показаны три фазы, к которым подключается асинхронный двигатель. Эти фазы получаются при коммутации транзисторных ключей, в качестве которых на этом рисунке показаны специальные транзисторы IGBT.

Рисунок 1. Блок схема трехфазного инвертора

Между устройством управления (контроллером) и силовыми ключами установлены драйверы силовых ключей инвертора. В качестве драйверов используются специализированные микросхемы типа IR2130, позволяющие подключить к контроллеру сразу все шесть ключей,- три верхних и три нижних, а кроме этого еще обеспечивает целый комплекс защит. Все подробности об этой микросхеме можно узнать в Data Sheet.

И все бы хорошо, но для домашних опытов такая микросхема слишком дорогая. И тут на помощь опять приходит наш старый знакомый интегральный таймер 555, он же КР1006ВИ1. Схема одного плеча трехфазного моста показана на рисунке 2.


Рисунок 2. Драйверы для транзисторов MOSFET на таймере 555

В качестве драйверов верхних и нижних ключей силовых транзисторов используются КР1006ВИ1, работающие в режиме триггера Шмитта. При использовании таймера в таком режиме достаточно просто получить импульсный ток открывания затвора не менее 200мА, что обеспечивает быстрое переключение выходных транзисторов.

Транзисторы нижних ключей соединены непосредственно с общим проводом контроллера, поэтому никаких трудностей в управлении драйверами не возникает, - нижние драйверы управляются непосредственно от контроллера логическими сигналами.

Несколько сложнее обстоит дело с верхними ключами. Прежде всего, следует обратить внимание на то, как осуществляется питание драйверов верхних ключей. Такой способ питания называется «бустрепным». Смысл его в следующем. Питание микросхемы DA1 осуществляется от конденсатора C1. А вот каким образом он может зарядиться?

Когда откроется транзистор VT2 минусовая обкладка конденсатора C1 практически связана с общим проводом. В это время конденсатор C1 заряжается от источника питания через диод VD1 до напряжения +12В. Когда транзистор VT2 закроется, будет закрыт и диод VD1, но запаса энергии в конденсаторе C1 достаточно для срабатывания микросхемы DA1 в следующем цикле. Для осуществления гальванической развязки от контролера и между собой управление верхними ключами приходится осуществлять через оптрон U1.

Такой способ питания позволяет избавиться от усложнения блока питания, обойтись всего одним напряжением. В противном случае потребовались бы три изолированных обмотки на трансформаторе, три выпрямителя и три стабилизатора. Более подробно с таким способом питания можно ознакомиться в описаниях специализированных микросхем.

Борис Аладышкин, http://electrik.info


ШИМ регулятор предназначен для регулирования скорости вращения полярного двигателя,яркости освещения лампочки или мощностью нагревательного элемента.

Преимущества:
1 Простота изготовления
2 Доступность компонентов(стоимость не превышает 2$)
3 Широкое применение
4 Для новичков лишний раз потренироваться и порадовать себя=)

Однажды понадобился мне "девайс" для регулировки скорости вращения кулера. Для чего именно уже не помню. С начала пробовал через обычный переменный резистор, он сильно грелся и это было не приемлемо для меня. В итоге покопавшись в интернете нашел схему на мне уже знакомой микросхеме NE555. Это была схема обычного ШИМ регулятора с скважностью (длительностью) импульсов равной или меньше 50% (позже приведу графики как это работает). Схема оказалось очень простой и не требовала настройки, главное было не накосячить с подключением диодов и транзистора. Первый раз его собрал на макетной плате и испытал, все заработало с пол оборота. Позже уже развел небольшую печатную плату и аккуратнее все выглядело=) Ну теперь взглянем на саму схему!

Схема ШИМ регулятора

Из нее мы видим что это обычный генератор с регулятором скважности импульсов собранный по схеме из даташита. Резистором R1 мы и меняем эту скважность, резистор R2 служит нам защитой от КЗ, так как 4 вывод микросхемы через внутренний ключ таймера подключен на землю и при крайнем положении R1 он просто замкнет. R3 это подтягивающий резистор. С2 это задающий частоту конденсатор. Транзистор IRFZ44N - это N канальный мосфет. D3 - это защитный диод который предотвращает выхода из строя полевик при обрыве нагрузки. Теперь немного о скважности импульсов. Скважность импульса - это отношение его периода следования (повторения) к длительности импульса, то есть через определенный промежуток времени будет происходить переход от (грубо говоря) плюса к минусу, а точнее от логической единицы к логическому нулю. Так вот этот промежуток времени между импульсами и есть та самая скважность.


Скважность при среднем положении R1

Скважность при крайнем левом положении R1


Скважность при крайнем правом положении R

Ниже приведу печатные платы с расположением деталей и без них


Теперь немного о деталях и их вид. Сама микросхема выполнена в DIP-8 корпусе, конденсаторы керамические малогабаритные, резисторы на 0,125-0,25 ватт. Диоды обычные выпрямительные на 1А (самое доступное это 1N4007 их везде навалом). Так же микросхему можно устанавливать на панельку, если в будущем вы хотите ее использовать в других проектах и лишний раз не выпаивать ее. Ниже приведу фотографии деталей.



Схема регулятора основанного на широтно-импульсной модуляции или просто , может быть использована для изменения оборотов двигателя постоянного тока на 12 вольт. Регулирование частоты вращения вала при помощи ШИМ дает большую производительность, чем при использовании простого изменения постоянного напряжения подаваемого на двигатель.

Шим регулятор оборотов двигателя

Двигатель подключен к полевому транзистору VT1, который управляется ШИМ мультивибратором, построенным на популярном таймере NE555. Из-за применения схема регулирования оборотов получилась достаточно простой.

Как уже было сказано выше, шим регулятор оборотов двигателя выполнен с помощью простого генератора импульсов вырабатываемого нестабильным мультивибратором с частотой 50 Гц выполненного на таймере NE555. Сигналы с выхода мультивибратора обеспечивают смещение на затворе MOSFET транзистора.

Длительность положительного импульса можно регулировать переменным резистором R2. Чем больше ширина положительного импульса поступающего на затвор MOSFET транзистора, тем больше мощность поступает на двигатель постоянного тока. И наоборот чем уже ширина его, тем меньше мощности передается и как следствие понижаются обороты двигателя . Данная схема может работать от источника питания в 12 вольт.

Характеристики транзистора VT1 (BUZ11):

  • Тип транзистора: MOSFET
  • Полярность: N
  • Максимальная рассеиваемая мощность (Вт): 75
  • Предельно допустимое напряжение сток-исток (В): 50
  • Предельно допустимое напряжение затвор-исток (В): 20
  • Максимально допустимый постоянный ток стока (А): 30

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

Если же она излишне высока, то это приводит не только к существенному перерасходу электрической энергии, но и к возможному пережогу инструмента. При слишком высокой скорости вращения, работа инструмента может стать также менее предсказуемой. Как это исправить? Для этой цели принято использовать специальный регулятор скорости вращения.

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

  1. Коллекторные двигатели.
  2. Асинхронные двигатели.

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Действие любого электродвигателя построено на очень простом принципе: если между полюсами магнита поместить прямоугольную рамку, которая может вращаться вокруг своей оси, и пустить по ней постоянный ток, то рамка станет поворачиваться. Направление вращения определяется согласно «правилу правой руки».

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство


Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор - это вращающаяся часть, статор - это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

Если говорить об их классификации, то можно говорить о:

  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Классификация может быть сделана также и по принципу возбуждения двигателя. В устройстве коллекторного двигателя, электрическое питание подаётся и на ротор и на статор двигателя (если в нём используются электромагниты).

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка


Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки , используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки , используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При изменении силы тока, эта частота может изменяться между 3 кГц и 5 кГц. Переменный резистор R2 служит для регулировки тока. При использовании электродвигателя в бытовых условиях, рекомендуется использовать регулятор стандартного типа.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:



При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

  1. Регулятор оборотов KA-18 ESC , предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
  2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
  3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

Для регулировки частоты вращения маломощных электродвигателей коллекторного типа обычно применяют резистор, который включают последовательно с двигателем. Но такой способ включения обеспечивает очень низкий КПД, а самое главное не позволяет осуществлять плавную регулировку оборотов (найти переменный резистор достаточной мощности на несколько десятков Ом совсем не просто). А самый главный недостаток такого способа, это то, что иногда происходит остановка ротора при снижении напряжения питания.

ШИМ-регуляторы , речь о которых пойдет в этой статье, позволяют осуществлять плавную регулировку оборотов без перечисленных выше недостатков. Помимо этого ШИМ-регуляторы так же можно применять и для регулировки яркости ламп накаливания.

На рис.1 приведена схема одного из таких ШИМ-регуляторов . Полевой транзистор VT1 является генератором пилообразного напряжения (с частотой повторения 150 Гц), а операционный усилитель на микросхеме DA1 работает как компаратор, формирующий ШИМ-сигнал на базе транзистора VT2. Частота вращения регулируется переменным резистором R5, изменяющим ширину импульсов. Благодаря тому, что их амплитуда равна напряжению питания, электродвигатель не будет «тормозить», а кроме этого можно добиться более медленного вращения, чем в обычном режиме.

Схема ШИМ регуляторов на рис.2 аналогична предыдущей, но задающий генератор здесь выполнен на операционном усилителе (ОУ) DA1. Этот ОУ функционирует в роли генератора импульсов напряжения треугольной формы с частотой повторения 500 Гц. Переменный резистор R7 позволяет осуществлять плавную регулировку вращения.

На рис.3. представлена весьма интересная схема регулятора. Этот ШИМ регулятор выполнен на интегральном таймере NE555 . Задающий генератор имеет частоту повторения 500 Гц. Длительность импульсов, а, следовательно, и частоту вращения ротора электродвигателя можно регулировать в диапазоне от 2 до 98 % периода повторения. Выход генератора ШИМ регулятора на таймере NE555 подключен к усилителю тока, выполненному на транзисторе VT1 и собственно управляет электродвигателем М1.

Главным недостатком схем рассмотренных выше является отсутствие элементов стабилизации частоты вращения вала при изменении нагрузки. А вот следующая схема, показанная на рис.4., поможет решить эту проблему.

Данный ШИМ регулятор как и большинство аналогичных устройств, имеет задающий генератор импульсов напряжения треугольной формы (частота повторения 2 кГц), выполненный на DA1.1.DA1.2, компаратор на DA1.3, электронный ключ на транзисторе VT1, а также регулятор скважности импульсов, а по сути частоты вращения электродвигателя - R6. Особенностью схемы является наличие положительной обратной связи посредством резисторов R12, R11, диода VD1,конденсатора C2, и DA1.4, которая обеспечивает постоянную частоты вращения вала электродвигателя при изменении нагрузки. При подключении ШИМ регулятора к конкретному электродвигателю при помощи резистора R12 производится регулировка глубины ПОС, при которой не возникает автоколебаний частоты вращения при увеличении или уменьшении нагрузки на вал двигателя.

Элементная база. В приведенных в статье схемах можно использовать следующие аналоги деталей: транзистор КТ117А можно заменить на КТ117Б-Г или как вариант на 2N2646; КТ817Б - КТ815, КТ805; микросхему К140УД7 на К140УД6, или КР544УД1, ТL071, TL081; таймер NE555 на С555, или КР1006ВИ1; микросхему TL074 на TL064, или TL084, LM324. Если необходимо подключить к ШИМ-регулятору более мощную нагрузку ключевой транзистор КТ817 необходимо заменить более мощным полевым транзистором, как вариант, IRF3905 или подобным. Указанный транзистор способен пропускать токи до 50А.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.