У какого двигателя стирлинга лучшая конструкция с максимальным кпд. У какого двигателя стирлинга лучшая конструкция с максимальным кпд Устройства с очень большим кпд схемы

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Однотактные преобразователи с высоким КПД, 12/220 вольт

Некоторые привычные бытовые электроприборы, такие как лампа дневного света, фотовспышка и ряд других, иногда бывает удобно использовать в автомобиле.

Так как большинство устройств рассчитаны на питание от сети с действующим напряжением 220 В, нужен повышающий преобразователь. Электробритва или же небольшая лампа дневного света потребляют мощность не более 6...25 Вт. При этом от такого преобразователя часто не требуется переменное напряжение на выходе. Указанные выше бытовые электроприборы нормально работают при питании постоянным или однополярным пульсирующим током.

Первый вариант однотактного (обратноходового) импульсного преобразователя постоянного напряжения 12 В/220 В выполнен на импортной микросхеме ШИМ-контроллера UC3845N и мощном N-канапьном полевом транзисторе BUZ11 (рис. 4.10). Эти элементы более доступны чем отечественные аналоги, и позволяют добиться высокого КПД от устройства, в том числе и за счет малого падения напряжения исток-сток на открытом полевом транзисторе (КПД преобразователя зависит и от соотношения ширины импульсов, передающих энергию в трансформатор к паузе).

Указанная микросхема специально предназначена для выполнения однотактных преобразователей и имеет внутри все необходимые узлы, что позволяет сократить число внешних элементов. У нее имеется сильноточный квазикомплементарный выходной каскад, специально предназначенный для непосредственного управления мощным. М-канальным полевым транзистором с изолированным затвором. Рабочая частота импульсов на выходе микросхемы может достигать 500 кГц. Частота определяется номиналами элементов R4-C4 и в приведенной схеме составляет около 33 кГц (Т=50 мкс).

Рис. 4.10. Схема однотактного импульсного преобразователя, повышающего напряжение

Микросхема также содержит схему защиты для отключения работы преобразователя при снижении напряжения питания ниже 7,6 В, что полезно при питании устройств от аккумулятора.

Рассмотрим более подробно работу преобразователя. На рис. 4.11 приведены диаграммы напряжений, поясняющие проходящие процессы. При появлении положительных импульсов на затворе полевого транзистора (рис. 4.11, а) он открывается и на резисторах R7-R8 будут импульсы, показанные на рис. 4.11, в.

Наклон вершины импульса зависит от индуктивности обмотки трансформатора и если на вершине имеется резкое увеличение амплитуды напряжения, как это показано пунктиром, это говорит о насыщении магнитопровода. При этом резко увеличиваются потери преобразования, что приводит к нагреву элементов и ухудшает работу устройства. Чтобы устранить насыщение, потребуется уменьшить ширину импульса или увеличить зазор в центре магнитопровода. Обычно бывает достаточно зазора 0,1...0,5 мм.

В момент выключения силового транзистора индуктивность обмоток трансформатора вызывает появление выбросов напряжения, как это показано на рисунках.

Рис. 4.11. Диаграммы напряжения в контрольных точках схемы

При правильном изготовлении трансформатора Т1 (секционировании вторичной обмотки) и низковольтном питании амплитуда выброса не достигает опасного для транзистора значения и поэтому в данной схеме специальных мер, в виде демпфирующих цепей в первичной обмотке Т1, не используется. А чтобы подавить выбросы в сигнале токовой обратной связи, приходящем на вход микросхемы DA1.3, установлен простой RC-фильтр из элементов R6-C5.

Напряжение на входе преобразователя, в зависимости от состояния аккумулятора, может меняться от 9 до 15 В (что составляет 40%). Чтобы ограничить изменение выходного напряжения, обратная связь по входу снимается с делителя из резисторов R1-R2. При этом выходное напряжение на нагрузке будет поддерживаться в диапазоне 210...230 В (Rнaгp=2200 Ом), см. табл. 4.2, т. е. меняется не более чем на 10%, что вполне допустимо.

Таблица 4.2. Параметры схемы при изменении напряжения питания

Стабилизация выходного напряжения осуществляется за счет автоматического изменения ширины открывающего транзистор VT1 импульса от 20 мкс при Uпит=9 В до 15 мкс (Uпит=15 В).

Все элементы схемы, кроме конденсатора С6, размещены на односторонней печатной плате из стеклотекстолита размером 90x55 мм (рис. 4.12).

Рис. 4.12. Топология печатной платы и расположение элементов

Трансформатор Т1 крепится на плате при помощи винта М4х30 через резиновую прокладку, как это показано на рис. 4.13.

Рис. 4.13 Вид крепления трансформатора Т1

Транзистор VT1 устанавливается на радиаторе. Конструкция штекера. ХР1 должна исключать ошибочную подачу напряжения на схему.

Импульсный трансформатор Т1 выполнен с использованием широко распространенных броневых чашек БЗО из магнитопровода М2000НМ1. При этом в центральной части у них должен быть обеспечен зазор 0,1...0,5 мм.

Магнитопровод можно приобрести с уже имеющимся зазором или же сделать его при помощи грубой наждачной бумаги. Величину зазора лучше экспериментально подобрать при настройке так, чтобы магнитопровод не входил в режим насыщения - это удобно контролировать по форме напряжения на истоке VT1 (см. рис. 4.11, в).

У трансформатора Т1 обмотка 1 -2 содержит 9 витков проводом диаметром 0,5.0,6 мм, обмотки 3-4 и 5-6 по 180 витков проводом диаметром 0,15...0,23 мм (провод типа ПЭЛ или ПЭВ). При этом первичная обмотка (1-2) располагается между двумя вторичными, т.е. сначала наматывается обмотка 3-4, а потом 1-2 и 5-6.

При подключении обмоток трансформатора важно соблюдать показанную на схеме фазировку. Неправильная фазировка не приведет к повреждению схемы, но работать как нужно она не будет.

При сборке использованы детали: подстроенный резистор R2 - СПЗ-19а, постоянные резисторы R7 и R8 типа С5-16М на 1 Вт, остальные могут быть любого типа; электролитические конденсаторы С1 - К50-35 на 25 В, С2 - К53-1А на 16 В, С6 - К50-29В на 450 В, а остальные типа К10-17. Транзистор VT1 установлен на небольшой (по размерам платы) радиатор, сделанный из дюралевого профиля. Настройка схемы заключается в проверке правильной фразировки подключения вторичной обмотки при помощи осциллографа, а также установки резистором R4 нужной частоты. Резистором R2 устанавливается выходное напряжение на гнездах XS1 при включенной нагрузке.

Приведенная схема преобразователя предназначена для работы с заранее известной мощностью нагрузки (6...30 Вт - постоянно подключенной). В холостом ходу напряжение на выходе схемы может достигать 400 В, что не для всех устройств допустимо, так как может привести к их повреждению из-за пробоя изоляции.

Если преобразователь предполагается использовать в работе с нагрузкой разной мощности, к тому же включаемой во время работы преобразователя, то необходимо снимать сигнал обратной связи по напряжению с выхода. Вариант такой схемы показан на рис. 4.14. Это не только позволяет ограничить выходное напряжение схемы в холостом ходу величиной 245 В, но и снизит потребляемую мощность в этом режиме примерно в 10 раз (Iпотр=0,19 А; Р=2,28 Вт; Uh=245 В).

Рис. 4.14. Схема однотактного преобразователя с ограничением максимального напряжения в холостом ходу

Трансформатор Т1 имеет такой же магнитопровод и намоточные данные, что и в схеме (рис. 4.10), но содержит дополнительную обмотку (7-4) - 14 витков проводом ПЭЛШО диаметром 0.12.0.18 мм (она наматывается последней). Остальные обмотки выполнены аналогично, как и в выше описанном трансформаторе.

Для изготовления импульсного трансформатора можно также использовать квадратные сердечники серии. КВ12 из феррита М2500НМ - число витков в обмотках в этом случае не изменится. Для замены магнитопроводов броневых (Б) на более современные квадратные (KB) можно воспользоваться табл. 4.3.

Сигнал обратной связи по напряжению с обмотки 7-8 через диод поступает на вход (2) микросхемы, что позволяет более точно поддерживать выходное напряжение в заданном диапазоне, а также обеспечить гальваническую развязку между первичной и выходной цепью. Параметры такого преобразователя, в зависимости от питающего напряжения, приведены в табл. 4.4.

Таблица 4.4. Параметры схемы при изменении напряжения питания

Еще немного повысить КПД описанных преобразователей можно, если импульсные трансформаторы закреплять на плате диэлектрическим винтом или термостойким клеем. Вариант топологии печатной платы для сборки схемы приведен на рис. 4.15.

Рис. 4.15. Топология печатной платы и расположение элементов

При помощи такого преобразователя можно питать от бортовой сети автомобиля электробритвы "Агидель", "Харьков" и ряд других устройств.

Речь в данной статье пойдёт о всем знакомого, но многим не понятного термина коэффициент полезного действия (КПД). Что же это такое? Давайте разберёмся. Коэффициент полезного действия, далее по тексту (КПД) - характеристика эффективности системы какого-либо устройства, в отношении преобразования или передачи энергии. Определяется отношением полезной использованной энергии к суммарному количеству энергии, полученному системой. Обозначается обычно? (« эта»). ? = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде: n=(A:Q) х100 %, где А - полезная работа, а Q - затраченная работа. В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии! Просматривая разные сайты, часто удивляюсь, как радиолюбители сообщают, вернее, хвалят свои конструкции, за высокий КПД, не имея понятия, что это такое! Для наглядности на примере рассмотрим упрощенную схему преобразователя, и узнаем, как найти КПД устройства. Упрощенная схема изображена на рис.1

Допустим за основу взяли повышающий DC/DC преобразователь напряжения (далее ПН), из однополярного, в повышенное однополярное. В разрыв цепи питания включаем амперметр РА1,и параллельно входу питания ПН вольтметр РА2, показания которых нужны для расчёта потребляемой (Р1) мощности устройства и нагрузки вместе от источника питания. К выходу ПН в разрыв питания нагрузки тоже включаем амперметр РАЗ и вольтметр РА4, требующиеся для расчёта потребляемой нагрузкой (Р2) мощности от ПН. Итак, всё готово для расчёта КПД, тогда приступим. Включаем своё устройство, производим замеры показаний приборов и рассчитываем мощности Р1 и Р2. Отсюда Р1=I1 x U1, и P2=I2 x U2. Теперь рассчитываем КПД по формуле: КПД(%)= Р2: Р1 х100. Вот теперь вы узнали примерно реальный КПД своего устройства. По подобной формуле можно рассчитать ПН и с двух полярным выходом по формуле: КПД(%)= (Р2+Р3) : Р1 х100, а также понижающий преобразователь. Следует отметить, что в значение (Р1) входит также и ток потребления, например: ШИМ-контроллёра, и (или) драйвера управления полевыми транзисторами, и прочими элементами конструкции.


Для справки: производители автоусилителей зачастую указывают выходную мощность усилителя намного больше, чем в реальности! Но, узнать примерную реальную мощность автоусилителя, можно по простой формуле. Допустим на автоусилителе в цепи питания +12v, стоит предохранитель на 50 А. Высчитываем, Р=12V х 50A, итого получаем мощность потребления 600 Вт. Даже в качественных и дорогих моделях КПД всего устройства вряд ли превышает 95%. Ведь часть КПД рассеивается в виде тепла на мощных транзисторах, обмотках трансформатора, выпрямителях. Так вот вернёмся к расчёту, получаем 600 Вт: 100% х92=570Вт. Следовательно, не какие там 1000 Вт или даже 800 Вт, как пишут производители, этот автоусилитель не выдаст! Надеюсь, эта статья поможет Вам разобраться в такой относительной величине, как КПД! Всем удачи в разработках и повторении конструкций. С Вами был invertor.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.