Принцип работы бензиново газовых двигателей. Какой двигатель лучше на "Газели": сравнение и фото. Преимущества использования газообразного топлива

ДВИГАТЕЛИ ГАЗОВЫЕ , двигатели внутреннего сгорания, работающие на газообразном топливе (естественном или генераторном), которое, перемешиваясь с воздухом до поступления в рабочий цилиндр, образует горючую смесь.

Различая эти двигатели по роду потребляемого топлива, необходимо отметить громадное значение двигателей газовых, работающих на колошниковых газах доменного процесса, т. к., несмотря на сравнительную калориметрическую бедность этих газов, общее количество их тепловой энергии очень велико: в одной только Германии, по современным данным, выплавляется в год около 12 млн. т. чугуна, а так как потребление кокса составляет в среднем 1 тонну на каждую тонну чугуна, то выход колошникового газа в Германии достигает 45 млрд. м 3 в год. Двигатели газовые, работающие на колошниковых газах, не являются, конечно, исключительными потребителями этой огромной энергии, т. к. наряду с ними весьма большое распространение имеют и паросиловые установки, но в настоящее время двигатели газовые несомненно количественно преобладают, несмотря на весьма высокие первоначальные затраты.

Современная паровая турбина, благодаря очень высокой утилизации тепла, является серьезным конкурентом двигателей газовых, так как основное преимущество последних - высокий КПД - немногим превосходит КПД современной турбины. Выбор того или иного типа силового хозяйства м. б. решен лишь на основании реальных местных факторов. Своим развитием двигатели газовые обязаны тому, что для их работы могут быть использованы в качестве топлива различные сорта дешевых газов.

Двигатели газовые начинают появляться в России немногим позже, чем за границей. Пионером их применения явилась металлургическая промышленность юга России (Днепровский завод - 1902 г. и Петровский завод) и Урала (Надеждинский завод - 1904 г. и Кыштымский завод); металлургическая же промышленность и осталась главным потребителем этих машин. Подавляющее большинство двигателей газовых работает на колошниковом газе и имеет своим назначением обслуживание главным образом воздуходувок и генераторов переменного и постоянного тока. Общая мощность газовых двигателей, установленных до сих пор в СССР, (по данным проф. Д.Д. Филиппова) выражается величиной в 100000 НР.

Конструкция двигателей газовых за 30 лет ее развития нашла свои установившиеся формы, по крайней мере у старейших фирм. Так, MAN, Deutz, Thyssen, Korting, Krupp, Tosi, Societe Cockerille строят горизонтальные четырехтактные двигатели с цилиндрами двойного действия тендем; лишь три крупных фирмы (Guldner, Lokom.-u. Maschinenfabrik и National) применяют вертикальную конструкцию, ограничиваясь, впрочем, сравнительно небольшими мощностями. На фиг. 1 показана конструктивная схема двухтактного двигателя фирмы Maschinen-A.-G. v. Klein; поршни n, n охлаждаются водой; впуском в цилиндр управляют клапаны к, к; выпуском - продувочные окна о, о. Несмотря на ряд общеизвестных преимуществ вертикального типа (меньшее трение поршней, лучшее уравновешивание и т. д.), горизонтальная конструкция двигателей газовых получила почти исключительное распространение. Это объясняется тем, что условия эксплуатации двигателей газовых требуют частой переборки и чистки клапанов, и доступность частей в горизонтальных машинах значительно сокращает простой. Кроме того, твердые образования в продуктах горения и механические негорючие загрязнения газа, скопляясь в нижней части цилиндра, легче выдуваются выхлопными газами. Немаловажными преимуществами являются также возможность расположения горизонтальных двигателей в сравнительно низких помещениях и удобство общего наблюдения. Поэтому в настоящее время горизонтальные машины получили исключительную монополию на большие мощности.

Что касается преобладания четырехтактного типа машин, то это надо объяснить большей их экономичностью, ибо необходимая ровная, безвихревая продувка двухтактных двигателей далеко не всегда осуществляется, следствием чего является недостаточная очистка или утечка газа через выхлопные органы двигателя.

Современная конструкция в основном лишь немногим отличается от старой, тогда как детали претерпели в течение ряда лет весьма серьезные конструктивные изменения. Эти изменения имели целью достижение большей простоты и взаимозаменяемости деталей и были обусловлены соответственным выбором материала. Стальное литье для цилиндров не нашло себе применения вследствие сложности формы и больших тепловых удлинений стали. Напротив, поршни всех диаметров с большим успехом отливаются в настоящее время из стали. Следует, впрочем, отметить, что из стали отливают только т. н. нетрущиеся поршни, в то время как материалом для остальных служит чугун. Введение в обиход нетрущихся стальных поршней повлекло за собою усложнение обработки поршневых штоков. Оси последних придается форма, примерно соответствующая очертанию упругой линии нагруженного поршнем штока, подпертого с двух сторон ползунами. В монтированной машине такой гнутый шток прогибается под действием веса поршня и принимает прямолинейное очертание, предохраняя так. обр., поршень от соприкосновения со стенками цилиндра (трутся только уплотнительные кольца). Точное центрирование штока относительно оси цилиндра имеет большое значение для сохранения уплотнений в крышках цилиндров. Тигельную сталь, шедшую раньше на поделку поршневых штоков, удалось с успехом заменить более дешевой, тщательно прокованной мартеновской сталью. Переконструирована также и рама, отливаемая из нескольких частей. Для двигателей больших мощностей цилиндры (фиг. 2) отливаются разъемными по сечению АБ, с водяной рубашкой рр большой емкости. Материал – мягкий и вязкий чугун. В середину цилиндра загоняется букса б из твердого чугуна, могущая свободно расширяться в осевом направлении. Фирма Тиссен отливает неразъемные цилиндры и для больших мощностей.
Наиболее существенным усовершенствованием надо признать упразднение специального, отдельно приводимого в действие смесительного клапана. В новых конструкциях функции смесительных органов выполняют впускные клапаны; они же осуществляют и регулирование. Помимо упрощения и удешевления распределения и регулирования, это нововведение значительно упростило и ускорило процесс периодической чистки цилиндров; этому обстоятельству новая конструкция (фиг. 3) обязана своим всеобщим распространением.

В двигателях воздуходувок обычно имеется ручное регулирование, в противоположность газодинамо, где применяется автоматический регулятор. Причина заключается в различии постоянства нагрузки обоих видов двигателей. Число оборотов двигателей газовых большой мощности обычно невелико - около 100 об/м. Приведение клапанов в действие осуществляется при помощи горизонтального распределительного вала, получающего движение от коленчатого вала посредством промежуточного вала. Регулятор обычно помещается на распределительном или промежуточном валу, чаще всего посредине рамы, воздействуя на газораспределение при помощи так называемого регуляторного валика. Собственно привод клапанов осуществляется часто при помощи катящихся один по другому профилированных рычагов с перемещающимся мгновенным центром вращения. Весьма сильные клапанные пружины n, n (фиг. 4), применение которых вызывается наличием больших масс движущихся частей клапанов к и их приводов, создают серьезные затруднения при применении кулачкового распределения, а поэтому последняя конструкция применяется лишь в двигателях газовых малых мощностей. Значительное распространение имеют и эксцентриковые распределения, главн. образом в двигателях газовых больших мощностей.

Необходимое, с точки зрения газораспределения, перекрывание выхлопного и всасывающего клапанов дает возможность горячим выхлопным газам войти в соприкосновение со свежей смесью, следствием чего бывают взрывы в смесительных органах. Поэтому применение желательного, с точки зрения наилучшего перемешивания газа с воздухом, смесительного резервуара становится невозможным. Смесительная камера с (фиг. 5) должна помещаться в непосредственной близости от седла всасывающего клапана к и быть по возможности малых размеров, а подводящие газ и воздух каналы должны отделяться заслонкой. Желательно ставить предохранительные клапаны. Все двигатели газовые должны снабжаться действующими от руки заслонками на газопроводах до связанных с регулятором смесительных органов. Эти заслонки, не влияя непосредственно на смесеобразование, должны дать возможность машинисту приспособлять процесс смесеобразования к переменному режиму газогенератора и домны. Для подсчетов процесса образования смеси Гелленшмит рекомендует средние числа, приведенные в табл. 1. Регулирование представляет одну из характернейших особенностей этих двигателей.

Зажигание в тихоходных двигателях большой мощности применяется почти исключительно низкого напряжения, так называемого отрывного действия. В месте разрыва цепи проскакивает искра, весьма горячая даже при низких напряжениях, не превосходящих 100-150 V. Примером подобной конструкции может служить аппарат фирмы Роберт Бош (фиг. 6 и 7). Сидящий на распределительном валу в кулак к отклоняет при своем вращении рычаг р крестообразной формы. Этот рычаг заклинен на цапфе якоря я, помещенного между полюсами 2-х магнитов м, так что отклонение рычага генерирует электрический ток. Приведение рычага в первоначальное положение осуществляется двумя боковыми пружинами n. Крестообразный рычаг свободно связан длинной тягой m с отрывным патроном П, удлиненный конец которого, проникающий в камеру горения, действием особой пружины постоянно прижат к контакту К патрона (фиг. 7), изолированного от стенок цилиндра и соединенного проводом с источником тока. Т. о., в момент отклонения рычага, т. е. в момент генерирования тока, тяга поворачивает отрывной патрон вокруг его оси и, отведя его внутренний конец от контактного патрона, размыкает цепь. Проскакивающая искра воспламеняет смесь. Несмотря на ряд преимуществ описанной системы (надежность действия, простота запального аппарата, длинная и горячая искра), с ней успешно конкурирует зажигание высокого напряжения. Причина лежит в следующем. Для надежного воспламенения смеси ставят по 3-4 свечи с каждой стороны цилиндра, а необходимость синхронизации их работы делает установку зажигания низкого напряжения слишком сложной. В противоположность этому высокое напряжение дает возможность упростить как всю установку, так и коммутацию.

Повышение мощности газовых двигателей требовало весьма больших размеров цилиндра. Тиссен дошел до 1500x1500 мм; повышение числа оборотов выше 100 в мин. представлялось нецелесообразным в отношении электрических агрегатов.

Оставался один путь - повышение среднего индикаторного давления.

Тут наметились два различных метода: 1) использование способа так называемой наддувки, т. е. наполнения цилиндра смесью повышенного давления (этот метод представлял опасность взрывов во всасывающем газопроводе); 2) применение более тщательной очистки цилиндров от продуктов горения, для того чтобы заполнять свежей смесью не только объем, описываемый поршнем, но и камеру сжатия. Далее, наддувку представилось возможным применить в виде дополнительного нагнетания продувочного воздуха в цилиндр в период сжатия. Этот способ позволил увеличить коэффициент наполнения зарядки и тем поднять среднее индикаторное давление. Т. о. мощность удалось повысить на 25-30%. При этом оказалось необходимым увеличить объем камеры сжатия, т. к. в противном случае значительно возрастают усилия в двигателе, что сокращает срок его службы, а неизбежное повышение температуры процесса ведет к преждевременной вспышке.
Помимо существенного значения охлаждающего эффекта, производимого продувочным воздухом на стенки, что влечет за собой понижение температуры конца всасывания, описанный способ имеет еще ряд преимуществ: чистое содержание цилиндров улучшает горение и тем способствует повышению и равномерности термического КПД; механический КПД относительно улучшается; ход двигателя становится равномернее, что позволяет уменьшить вес маховика. На фиг. 8 представлены три нормальные диаграммы и им соответственные, снятые со слабой пружиной: I и I" - принадлежат нормальному двигателю, II и II" - машине с продувкой, III и III" - машине с продувкой и дутьем, т. е. нагнетанием продувочного воздуха после закрытия газового и воздушного каналов. Применяя продувочный воздух давлением в 1,25-1,30 atm, можно достигнуть увеличения наполнения на 25-30%. Действительное давление конца всасывания соответственно возрастает до 1,5 atm вместо обычных 0,95. Как видно из диаграмм, среднее индикаторное давление возрастает с 4,8 до 6,25 atm. Характерна конструкция клапана с тремя каналами (фиг. 9): по верхнему поступает продувочный воздух, по среднему - воздух для рабочей смеси, по нижнему - газ. Управление щелями а, б и в всех трех каналов достигается тремя цилиндрическими золотниками г, д и е, насаженными на стержень всасывающего клапана к. При закрытом всасывающем клапане канал а для сжатого воздуха полностью открыт и закрывается при подъеме клапана, когда открываются щели б и в для воздуха и газа. Регулирование при уменьшении хода происходит так, что сперва перекрывается дроссель з в канале для сжатого воздуха, так что двигатель работает без наддувки, а в дальнейшем происходит дросселирование газа и воздуха. Цилиндр фирмы Тиссен с подобными клапанами развивал 2750 НP при 97 об/мин. Характеристику возможностей, связанных с применением указанного метода, дает табл. 2.

Эти данные относятся к двухмесячному испытанию двух двигателей Тиссена, установленных на металлургическом заводе Феникс-Рурорт (Германия). Главные размеры цилиндров и число оборотов в минуту в обеих машинах были одинаковы (1300 х 1400 мм и n= 94), но одна из них была нормальным четырехтактным двигателем, другая же - повышенной мощности. Расходы на обслуживание, воду и смазку были одинаковы; расход тепла на 1 kWh второй машины был ниже. Заслуживает быть отмеченной весьма высокая средняя нагрузка.

Вопрос об использовании тепла отходящих газов возник как следствие появления машин повышенной мощности: в то время как обычные двигатели теряли с отходящими газами до 30-32% подведенного тепла, машины повышенной мощности теряли до 50-52%. Использование отработанных газов было особенно желательно вследствие их высокой температуры (700-750°С). Эта идея практически осуществилась в форме котлов, преимущественно типа дымогарных, отапливаем, отходящими газами. На фиг. 10 приведена схема подобного котла конструкции фирмы Тиссен.

Большие газовые двигатели повышенной мощности позволяют рассчитывать на 1 кг пара (давление до 10-14 atm при 350-450°С) с каждого эффективного силочаса, развиваемого двигателем. Используя этот пар в соответствующей машине, можно повысить термический КПД с 26-28 до 31-33%.

Охлаждающая вода также подлежит использованию: она может быть использована непосредственно на цели отопления или варки (в двигателе газовом температура воды, выходящей из водяной рубашки, доходит до 80-90°С), или с помощью маленького котла, сообщающегося с системой охлаждения, превращена в пар (до 3 atm - Тиссен), или, наконец, как то делает MAN, направлена в общий котел, отапливаемый отходящими газами. Термический КПД подобной паросиловой установки может быть доведен до 0,36, в предположении, что расход тепла при 70% нагрузки составляет лишь 2400 Cal на 1 силочас.

Исследование экономичности газосиловых установок дает следующие результаты (по данным Ф. Бартшерера).

1) Установки без использования тепла отходящих газов. При средней нагрузке в 86% и расходе, тепла в 3700 Cal на 1 kWh,

Учитывая расход энергии на приведение в действие ряда вспомогательных устройств (воздушных и водяных насосов и пр.), приведенный КПД η необходимо понизить. По произведенным измерениям, этот дополнительный расход выражается примерно в 7-8% от общего; поэтому η = 21,5%. 2) Установки с использованием тепла отходящих газов. В табл. 3 приведен примерный тепловой баланс упомянутого выше двигателя Тиссена.

Полагая среднюю паропроизводительность котла в 1,63 кг пара на каждый реально отдаваемый двигателем kWh, что соответственно равняется 1160 Cal, имеем при непосредственном использовании тепла (отопление, варка):

В случае потребления пара на генерирование тока можно, при пользовании турбодинамо с высокими давлениями, из упомянутых 1,63 кг пара получить 0,338 kWh. В этом случае расход пара в турбине будет равен 4,8 кг на один kWh, и

Практикуемое в настоящее время весьма высокое давление пара повысит КПД в данном случае до 31,5%, таким образом при 60 atm и 380°С выигрыш составит 10%.

Использование тепла охлаждающей воды, при наличии в системе охлаждения особого парообразовательного устройства, дает при 700 Cal с каждого kWh примерно 0,8-1,0 кг пара на kWh (см. табл. 4).

Для надежности работы двигателя давление пара в рубашке не поднимают выше 2 atm; поэтому пар м. б. использован только в ступени низкого давления турбины, где он разовьет около 0,1 kWh. Таким образом

Техника безопасности . Двигатели газовые должны быть установлены в отдельных специально для этого устроенных помещениях. Только при особых условиях работы допускается установка двигателей газовых в рабочих помещениях, но при обязательном отделении их решетками или перилами высотой не менее 1 м со сплошной зашивкой внизу на высоту не менее 18 см. Двигатели газовые должны устанавливаться на прочных фундаментах, не связанных со стенами здания; высота помещения должна быть не менее 4 м, а ширина и длина таковы, чтобы около двигателя или агрегата с ограждениями оставался свободный проход не менее 1 м шириной. Освещение д. б. достаточным для безопасного обслуживания двигателей газовых. Вентиляция должна обеспечить правильный приток чистого воздуха и температуру не свыше 26°С. Наинизшая температура д. б. не менее 10°С. Все ямы, углубления (например, для маховика), отверстия в полах и мостки в помещении двигателей газовых должны быть ограждены перилами в 1 м со сплошной зашивкой по низу высотой в 18 см. Если двигатели газовые имеет части, которые нельзя безопасно обслуживать с пола, то д. б. устроены площадки и лестницы с перилами высотой в 1 м и зашивкой по низу на 18 см. Проходы под канатами и ремнями должны быть перекрыты прочной и надежно укрепленной конструкцией. Все доступно расположенные движущиеся части двигателей газовых должны быть ограждены прочными решетками, перилами или футлярами. Отработанные газы двигателей газовых должны удаляться в атмосферу через достаточно высокую отводящую трубу (желательно выше конька крыш соседних зданий). Для уменьшения шума объем глушителя д. б. не менее пятикратного объема рабочего хода одного цилиндра; исключение допускается для глушителей специальной конструкции; самый глушитель должен располагаться снаружи вне помещения двигателей газовых. Выхлопные и отводящие трубы д. б. изолированы в пределах машинного отделения (опасность ожогов) и не должны соприкасаться с горючим материалом (пожарная опасность). Ряд мер имеет в виду предотвратить опасность от проникновения газа: 1) подводящая газ труба д. б. снабжена автоматическим запорным клапаном непосредственно на патрубке двигателя, 2) поршень, клапаны и сальники двигателей газовых должны быть достаточно плотны и 3) кроме нормального запорного клапана, должен иметься дополнительный, легко доступный, по возможности в помещении самого двигателя. Во избежание катастрофы от случайной остановки регулятора конструкция передачи к последнему должна обеспечивать надежность действия; поэтому не допускается передача ременная или шнуровая.

Одним из наиболее опасных моментов является пуск двигателя газового в ход. Для 4-тактных двигателей мощностью свыше 15 НP и 2-тактных свыше 25 НP должны устраиваться специальные автоматические пусковые приспособления (сжатым воздухом, отработанными газами, электричеством и т. п.). Для более мелких двигателей должны иметься ручные приспособления, обеспечивающие легкий и безопасный пуск их в ход. Ручная смазка, как безусловно опасная, д. б. заменена самодействующей для крейцкопфов, кривошипов, коленчатых валов, эксцентриков, направляющих и сальников.

Правила техники безопасности для газогенераторов - см.

В результате исследований по использованию природного газа в качестве топлива в дизелях установлено следующее:

  • природный газ (метан) в отличие от дизельного топлива обладает малым цетановым числом (10 ед.) и, следовательно, плохой воспламеняемостью;
  • осуществить воспламенение газа в дизеле со степенью сжатия менее 25 без постороннего источника зажигания смеси невозможно, так как температура воспламенения метана (680 °С) существенно выше температуры воспламенения дизельного топлива (280 °С);
  • для природного газа наиболее приемлемым процессом организации воспламенения рабочей смеси является газодизельный, при котором газовоздушная смесь воспламеняется от небольшой запальной дозы дизельного топлива, впрыскиваемого в камеру сгорания в конце такта сжатия;
  • газодизельный процесс является наиболее экономически оправданным, так как при этом не требуется переделка двигателя и его систем, а только дооборудование двигателя ГСП и перерегулировка топливной аппаратуры, которая выполняется автоматически с помощью электронных устройств;
  • при прекращении подачи газа газодизель может полноценно работать как обычный дизель. В отличие от бензиновых ГБА газодизельный процесс ДВС не только не ухудшает технико-экономические показатели работы автомобиля, но даже несколько увеличивает КПД двигателя (на 1 …2 %) по сравнению с дизельным циклом;
  • эксплутационный расход дизельного топлива при работе в газодизельном режиме снижается на 75…80 %.

Рис. Газовая система питания газодизельных и бензиновых двигателей внутреннего сгорания:1 - баллоны высокого давления; 2 - межбаллонные трубопроводы с компенсационными витками; 3 - манометр; 4 - расходный вентиль; 5 - межсекционная крестовина; 6 - наполнительный вентиль; 7 - магистральный вентиль; 8 - подогреватель газа; 9 - редуктор высокого давления; 10 - датчик падения давления газа в магистрали; 11 - предохранительный клапан; 12 - фильтр с электромагнитным клапаном; 13 - редуктор низкого давления; 14 - газовый смеситель; 15 - карбюратор-смеситель; 16 - трубка подачи газа системы холостою хода; 17- электромагнитный клапан пусковой системы; 18 - кнопочный переключатель; 19 - фильтр бензиновой системы питания с электромагнитным клапаном; 20 - дозатор газа; 21 - трехходовой электромагнитный клапан; 22 - смеситель газа; 23 - сопло Вентури; 24 - датчик блокировки; 25 - механизм установки запальной дозы; 26 - подвижный упор; 27 - телескопическая тяга; 28 - тяга регулятора ТНВД; 29 - датчик частоты вращения; 30 - зубчатый венец датчика; 31 - педаль акселератора

Конструкция газодизеля по сравнению с карбюраторной газобаллонной системой питания имеет некоторые отличия и дополнительно включает в себе следующие элементы: дозатор газа 20, трехходовой электромагнитный клапан 21, смеситель 22 с диффузором типа сопла Вентури 23, датчик блокировки 24, механизм установки запальной дозы 25, подвижный упор 26, телескопическую тягу 27 управления регулятора 28 ТНВД, индуктивный датчик 29 частоты вращения ДВС, зубчатый венец 30 коленчатого вала ДВС, рычаг-педаль 31 привода подачи топлива.

Газодизельный процесс осуществляется следующим образом. Газ после прохождения редуктора низкого давления 13 попадает в дозатор-смеситель, выполненный в виде самостоятельных блоков дозатора 20 и смесителя 22.

Дозатор газа, представляющий собой дроссельную заслонку, изготовлен в едином корпусе с диафрагменным механизмом ограничения подачи газа. Управление приводом дроссельной заслонки осуществляется с помощью педали 31 и соответствующей тяги из кабины водителя.

Управление работой диафрагменного механизма производится с помощью трехходового электропневматического клапана 21. Основное назначение дозатора - регулирование количества подаваемого в смеситель газа в зависимости от нагрузки двигателя и автоматическое уменьшение подачи газа при достижении двигателем максимальной частоты вращения коленчатого вала (2 550 мин»1). Система ограничения максимальной частоты вращения состоит из зубчатого венца 30, индуктивного датчика 29, электронного реле и трехходового электромагнитного клапана 21.

Смеситель 22 представляет собой цилиндр со вставленным в него диффузором типа сопла Вентури 23. Внутри диффузор имеет кольцевой коллектор подвода газа с радиальными отверстиями, через которые газ смешивается с воздухом, образуя гомогенную смесь, поступающую в цилиндры двигателя. Таким образом, мощность двигателя в газодизельном режиме меняется только за счет изменения количества поступающего в цилиндры газа через смеситель при постоянной величине запальной дозы дизельного топлива, равной 12… 16 мм3. Напомним, номинальная цикловая подача топлива при работе по дизельному циклу составляет в пять раз большую величину - 79…81 мм3.

Механизм установки запальной дозы топлива 25 при переводе тумблера, расположенного в кабине автомобиля, в положение «Газ» включает питание электромагнита, который переводит подвижный упор 26 в положение, когда он препятствует дальнейшему перемещению рычага управления регулятора топливного насоса 25.

Одновременно подвижный упор 26 при включении электромагнита отходит от концевого выключателя датчика 24 блокировки подачи газа и «неограниченной» доли дизельного топлива, обеспечивая тем самым включение питания электромагнитного клапана-фильтра 12 подачи газа. При выключении электропитания двигателя или в аварийных ситуациях, связанных, например, с выходом из строя электромагнита механизма установки запальной дозы 25, упор 26 вернется в первоначальное положение, включит датчик блокировки 24, который в свою очередь отключит цепь питания электромагнитного клапана 12 подачи газа. Аналогичные операции происходят при переводе двигателя из газодизельного в дизельный режим, когда тумблер в кабине водителя переводится в положение «Дизель».

Телескопическая тяга 27 служит для обеспечения перемещения педали 31 акселератора при включенном механизме ограничения хода рычага 28 управления регулятором ТНВД. В этом случае при нажатии на педаль 31 происходит сжатие пружины в телескопической тяге, и движение от педали передается на привод дроссельной заслонки дозатора 20 газа. В дизельном режиме телескопическая тяга работает как жесткий элемент, так как жесткость ее пружины значительно выше жесткости пружины рычага управления регулятора 28 ТНВД.

ГАЗ (Горьковский автомобильный завод) — всем известный российский автопроизводитель. Популярен благодаря созданию таких автомобилей, как Волга, Газель, Чайка, Победа и других знаменитых в прошлом и настоящем авто. В текущее время ГАЗ это производитель коммерческой техники, из-за падения спроса, сборка легковых автомобилей была прекращена. Тем не менее, этих автомобилей до сих пор много на улицах наших с вами городом и объяснить эту массовость достаточно легко — дешевизна. Запчасти на ГАЗ стоят совсем не дорого, автомобили ремонтируются на каждом углу, а цена на сам авто крайне мала. Для любителей тюнинга, ГАЗ подходит как нельзя лучше, двигатели имеют приличный рабочий объем и мощность, неплохо поддаются турбированию и цена на все это остается в рамках приличия.

Двигатели ГАЗ на легковых автомобилях — это довольно простые рядные четырехцилиндровые моторы самых различных моделей и модификаций, преимущественно, производства, ЗМЗ и УМЗ. На топовых автомобилях ГАЗ использовались 6 цилиндровые двигатели и V8. Кроме того, применялись и двигатели иностранного производства такие, как рядная четверка 3RZ и V6 5VZ , Rover T16, а также Chrysler EDZ. Вместе с бензиновыми двигателями, на ГАЗ устанавливались и дизельные двигатели: рядные 4-цилиндровые ГАЗ-560 Штайер, а также производства ЯМЗ, ММЗ, Cummins, Toyota 2L-T.
Двигатели ГАЗ на грузовых автомобилях — это бензиновые V8 ЗМЗ, рядные турбированные 4-цилиндровые ММЗ и ЯМЗ, а на старых версиях ГАЗ, двигатели применялись 6-цилиндровые, с рядной конфигурацией.

На WikiMotors собрана и продолжает собираться информационная база по моторам Горьковского автозавода, здесь вы найдете все модели и маркировки двигателей ГАЗ, какие и куда ставились, их объемы, технические характеристики, неисправности (троит, глохнет и т.д.) и ремонт своими руками. А также ресурс, устройство, вес, масло в двигатель ГАЗ, сроки замены, сколько лить и прочее.
Вместе с этим, особое внимание уделено тюнингу ГАЗ: как правильно дорабатывать мотор в атмосферном варианте, а также установка компрессора и турбины.
Прочитав информацию на Викимоторс, вы решите, какой двигатель ГАЗ стоит купить, а какой доставит головную боль, тюнинговать стандартный силовой агрегат или выбрать другой для свапа и многое другое.

Машины производства ГАЗ модели «Газель» – один из самых популярных малотоннажных автомобилей в странах СНГ. В массовое производство данная машина и двигатель на Газель поступили еще в 1994 году и выпускаются по текущий день.

На протяжении всего срока производства и эксплуатации автомобиля, «Газель» претерпела множество различных изменений и модификаций, касающихся как внешнего вида и кузова, так и мотора. Также эта машина является неплохим вариантом для самостоятельного улучшения. Например, можно установить японский двигатель на газель, что повысит срок службы авто и значительно улучшит некоторые характеристики.

Среди значительных изменений во все время производства «Газели», автомобиль был значительно изменен два раза:

  1. В 2003 году было проведено изменение внешнего вида, которое значительно повлияло на дальнейший стиль кузова. Аппаратная составляющая не подвергалась глубоким модификациям.
  2. Более масштабную и серьезную модификацию мотор для Газели претерпел уже в 2010, где изменения затронули как принцип работы устройства, так и его характеристики. Кроме этого, к названию машины прибавили приставку «Бизнес». В таком виде данное авто производится и на 2016 год.

В основном данная машина является хорошим и дешевым вариантом для коммерческих поездок и перевозок, активно используется экспедиторами и службами почтовых перевозок.

Двигатель ЗМЗ 402

Самым распространенным мотором, которым могли похвастаться двигатели ГАЗ, был ЗМЗ 402. Выпускался он с начала 1980 и до 2006 года. Сейчас можно встретить исключительно в поддержанном виде.

Данный двигатель ГАЗ является самым распространенным, так как его производили более чем 20 лет, что позволяет с легкостью подыскивать нужные запчасти и проводить ремонт.

От своих предшественников в плане технических характеристик особенно ничем не отличается:

  • Цилиндр мотора выполнен из алюминия, система питания карбюраторная.
  • Максимальный объем двигателя – 2115 см. куб.
  • Данный движок отличается достаточно большим потреблением топлива – до 14 литров на 100 км пробега по городу.
  • Одним из главных преимуществ данного мотора является его универсальность, благодаря которой его можно использовать практически на всех машинах марки ГАЗ.

Поломки и проведение ремонта двигателя ЗМЗ 402

Несмотря на высокое качество и массовость в производстве мотора Газель ДВС, поломки в нем все-же имеют место быть. К таковым следует относить следующие неисправности:

  1. Одной из самых хрупких деталей в двигателе ЗМЗ 402 является сальник коленвала. Сделан он из обычной веревки, предварительно пропитанной в графитовой смазке. Предел прочности такой детали – до 2500 об/мин. Если превысить данный показатель, то сальник коленвала попросту начнет пропускать масло наружу. Для того чтобы избежать таких неприятных ситуаций с ЗМЗ 402, следует провести замену сальниковой набивки на более качественную, сделанную из прочного материала;
  2. Возможно появление ненормальной вибрации, неестественных звуков и подергиваний во время работы двигателя на холостом ходу. Такие признаки неисправности могут появиться в следствии износа карбюратора, так как его конструкция изначально кривая и является не самым лучшим решением, внедренным в двигатели на Газель. Из-за такой особенности в цилиндры мотора топливо подается неравномерными частями, что приводит к вышеописанной неисправности;
  3. Возникновение нездоровых звуков в моторе во время его работы. В основном владелец автомобиля с двигателем ГАЗ сталкивается с постукиванием в двигателе, что говорит о неисправной подаче топлива через клапан. Для того чтобы избегать подобных неприятностей, следует своевременно проводить регулировку зазоров клапанов. В основном данный автомобиль нуждается в уходе за движком после каждых 15 000 км пробега. Если стук возникает не из-за кривого клапана, то стоит обратить свое внимание на шатунные вкладыши или распределительный вал.

Благодаря широкому распространению, практически любая поломка ЗМЗ 402 может быть исправлена, достаточно узнать причину неисправности и провести качественный ремонт или замену поврежденной части. Именно поэтому двигатели на газель не часто полностью меняют из-за поломки.

Модификации ЗМЗ

Также существует большое количество модифицированных версий моторов ЗМЗ 402, которые массово производились и выпускались под одноименные автомобили.

К самым распространенным следует отнести следующие модификации:

  • ЗМЗ 402.10

Именно эту модификацию чаще всего можно встретить у автомобилистов в нашей стране. Устанавливается она на Волгах и работает с 92 бензином;

  • ЗМЗ 4022.10

Не самое лучшее инженерное решение для автомобилей с невысокой стоимостью, так как оно содержит в себе ряд сложных инженерных решений, таких как измененный карбюратор и улучшенный коленвал.

Такие нововведения должны были увеличить характеристики, экономичность, уменьшить токсичность двигателя ГАЗ. Но на деле получилось далеко не все так хорошо, не было ожидаемой экономичности, а вся конструкция требовала значительных доработок;

  • ЗМЗ 4025.10

Особенных отличий от модели 402 не имеет, но разработан и используется для машин семейства «Газель».

Двигатель ЗМЗ 406

Это следующая ступень развития двигателей для «Газели», которая пришла на смену ЗМЗ 402.

Несмотря на небольшие отличия в цифрах между ними, данный мотор претерпел кардинальные изменения по сравнению с предшественником.

К главным отличиям следует отнести следующие изменения:

  • изменение расположения распредвалов;
  • 16-ти клапанный мотор;
  • установлены гидрокомпенсаторы, что позволяет избежать постоянной необходимости в их регулировке;
  • значительно улучшенный привод ГРМ, рабочий ресурс которой составляет 100.000 км пробега, но в большинстве случаев может выдерживать нагрузки и в два раза больше. Распределительный вал двигателя приводится во вращение шестернями с косыми зубьями. При этом на коленчатый вал насажена стальная шестерня, а на распределительный для обеспечения бесшумной работы - текстолитовая с чугунной ступицей.

Но несмотря на общее улучшение в конструкции и использование более надежных компонентов, данный двигатель ГАЗ имеет и ряд серьезных недостатков, из-за которых приходиться довольно часто контролировать гидронатяжители и состояние цепей.

В то же время сложно переоценить нововведения в производстве двигателей ГАЗ, особенно если сравнивать ЗАЗ 406 с классическим ЗАЗ 402.

Модификация ЗМЗ 406

Модификаций двигателя ЗМЗ 406 всего три:

  • ЗМЗ 4061.10

Двигатель машины ГАЗ работает на 76-м бензине, имеет карбюраторный тип. На данный момент встречается редко, так как производился в меньших количествах, чем другие модификации и в наше время морально устарел;

  • ЗМЗ 4062.10

Одна их самых распространенных модификаций мотора ЗАЗ. Используется данный двигатель Газели и на Волгах. Имеет инжекторный тип работы;

  • ЗМЗ 4063.10

Одна из последних модификаций вышеупомянутого мотора, работающая на 92-м бензине. Данный двигатель ГАЗ работает на карбюраторной схеме.

Поломки ЗМЗ 406

Данный тип мотора может иметь следующие неисправности:

  • несмотря на более крепкий материал, используемый для гидронатяжителей – металлические цепи, они также имеют некоторые минусы, с которыми водитель мог не сталкиваться при эксплуатации веревочной передачи. Цепи ГРМ на моторе могут со временем прозаклинивать. Такая неисправность приводит к возникновению нездорового шума, появляются колебания в работе движка, приводящие к разрушению башмака или перескакиванием цепи;
  • перегрев двигателя ЗМЗ 406. Одна из часто встречающихся неисправностей, которая появляется при загрязненности радиатора или неисправной работе термостата. Стоит заменить охлаждающую жидкость на новую;
  • из-за износа гидрокомпенсатора может возникнуть стук в двигателе. С такой неисправностью чаще всего сталкиваются владельцы ЗМЗ 406 и мотора ГАЗ 3307.
    Также данная неисправность появляется при поломке шатунных вкладышей, поршней и поршневых пальцев.

Двигатель УМЗ 4216

УМЗ 4216 одна из самых современных модификаций моторов от данного производителя. Его хорошие спецификации и высокая надежность доказываются многими положительными отзывами среди автомобилистов.

Главным отличием от более старых моделей – это значительно увеличенный объем двигателя, улучшенные выпускные клапана, ставшие больше на 3 мм по сравнению с предыдущей моделью и инжекторный тип работы и подачи бензина.

Также на базе УМЗ 4216 была разработана серия двигателей Эвотек. Если сравнивать данный движок с ЗМЗ 402, то УМЗ 4216 имеет блоки значительно повышенной прочности, вместо мокрых гильз начали устанавливать сухие и тонкие аналоги, цилиндры стали больше в диаметре и теперь равняются 100 мм против 92мм, используемых на ЗМЗ 402.

Также на Ульяновском моторном заводе, где были произведены двигатели с аббревиатурой , собирают дизельный двигатель на Газель.

Основные поломки и неисправности с данным мотором особенно не отличаются от вышеописанных проблем для ряда других двигателей. Это обусловлено тем, что каких-либо глобальных отличий серии моторов от УМЗ нет, и они имеют схожее строение и принцип работы.

Для того чтобы двигатель ГАЗ работал как можно дольше, следует каждые 10 000 км пробега проверять и регулировать зазоры клапанов, что поможет избежать серьезных поломок. Такие же правила справедливы при ремонте и эксплуатации двигателя ГАЗ 3307, распространенного среди хозяйственных и государственных предприятий, имеющих в своем автопарке грузовые машины данного производителя.

Не удивительно, что на фоне глобального удорожания нефтепродуктов огромное число автолюбителей пытается любым доступным способом снизить расход топлива. Сразу отметим, что в развитых странах проблему решили, но далеко не «бюджетно».

Простыми словами, более экономичный современный в Европе уверенно вытесняет . Для этого созданы условия в виде доступного кредитования, уменьшенного налогообложения на ТС с дизельным мотором и т.д.

Однако на территории СНГ по понятным причинам далеко не каждый может позволить себе новую или «свежую» двух или трехлетнюю дизельную машину б/у за наличные или даже в кредит. Получается, основной доступной альтернативой является перевод уже имеющегося бензинового автомобиля на газ, то есть установка ГБО.

При этом расход газа может быть даже больше, чем на бензине, но такой вид топлива стоит, в среднем, на 50% дешевле. Также особенностью газа является небольшая потеря (5-10%), которая на многих не сильно ощущается. Так или иначе, для тех, кто активно эксплуатирует свой авто, выгода очевидна.

Параллельно с этим ответственные водители часто интересуются, вреден ли газ для двигателя автомобиля. В этой статье мы поговорим о том, как газ влияет на двигатель, а также рассмотрим основные особенности работы бензинового ДВС на газо-воздушной смеси.

Читайте в этой статье

Влияние газа на мотор и его ресурс

Хорошо известно, что с учетом большой популярности и востребованности газового оборудования данное решение имеет как сторонников, так и противников. Сразу отметим, в этой статье мы не будем детально рассматривать все плюсы и минусы ГБО, а также особенности эксплуатации, установки оборудования и т.п. Заострим наше внимание исключительно на силовом агрегате.

Итак, оказывает ли газовое топливо влияние на срок службы и исправность бензинового мотора, и если да, тогда чем вреден газ для двигателя. Сразу отметим, газ не портит мотор и практически никак на него не влияет, однако на практике далеко не все так просто. Более того, этот вопрос окружен большим количеством мифов и заблуждений.

  • Прежде всего, для нормальной работы мотора на газу как ГБО, так и сам двигатель должны быть правильно настроены. Другими словами, заниматься установкой и настройкой должен только квалифицированный специалист. Что касается владельца автомобиля, от него также требуется полностью придерживаться всех предписаний и рекомендаций касательно эксплуатации и обслуживания газового оборудования.

Игнорирование этих правил привело к распространенному мнению о том, что газ портит двигатель. Одним из аргументов является тот факт, что у газа более высокий показатель октанового числа по сравнению с бензином (92-98 у бензина, тогда как у газа около 110 и более). Многие водители утверждают, что более высокое октановое число приводит к тому, что мотор работает в нештатных режимах, газ «сушит» двигатель, происходит и т.п.

Действительно, газ имеет разницу по октановому числу и несколько отличается от бензина по характеристикам сгорания, однако при грамотных настройках значительного влияния на состояние ДВС, клапанов и других элементов оказать не может. Еще раз повторимся, для этого настройка должны быть выполнена правильно.

Главное, в двигатель нужно подавать правильно приготовленную газо-воздушную смесь. Если такая смесь окажется слишком или же переобогащенной, тогда возникнут последствия. Кстати, такие же последствия возникают и с бензином.

Богатая смесь выводит из строя катализаторы, может возникнуть прогар в выпускной системе, мотор работает с перебоями, возможно . Что касается бедной смеси, когда массовой части топлива (бензина или газа) в составе меньше, чем воздуха, тогда последствия от езды для мотора будут намного более серьезными.

Обеднение приводит к тому, что смесь горит в камере сгорания дольше, также увеличивается и температура сгорания. В результате прогорают клапана и седла клапанов, значительно сокращается , возникают локальные перегревы.

Далее проблемы прогрессируют, так как неправильная работа свечей и другие факторы становятся причиной . Если коротко, имеет место серьезное нарушение процесса сгорания топлива в цилиндрах. Еще нужно добавить к этому некомпетентность многих мастеров в различных кустарных сервисах по установке ГБО, а также стремление самих автовладельцев максимально экономить. Понятно, что причины многих проблем с мотором после монтажа газового оборудования очевидны.

Например, в газовом оборудовании, которое относится к начальным поколениям (ГБО-1 и ГБО-2) регулировки качества смеси представляют собой простой винт, которым можно только увеличить или уменьшить подачу газа. Другими словами, при помощи болта можно обогатить или обеднить смесь. Как правило, многие делали это просто «на глазок», лишь бы двигатель устойчиво работал.

При этом далеко не все водители в то время знали, что для правильных регулировок в сервисе должен был присутствовать специальный и не самый дешевый прибор (многокомпонентный газоанализатор). Более того, чтобы экономить газ, сами владельцы часто занимались регулировками, закручивая регулировочный винт и тем самым сильно обедняя смесь.

Машина нормально работала, расход газа падал, причем мощность ДВС также немного уменьшалась. Но спустя немного времени все заканчивалось, как минимум, прогоревшими клапанами. Так вот, становится понятно, что клапана прогорели не из-за того, что мотор работал на газу.

  • Разобравшись со смесью, давайте также поговорим о хлопках, которые выделяют в списке частых проблем газового оборудования. Обратные хлопки на машинах с ГБО фактически являются неконтролируемым самопроизвольным возгоранием бензиново-воздушной или газо-воздушной смеси во .

Как правило, такие хлопки можно услышать на машинах, которые оборудованы все теми же устаревшими ГБО 1-3 поколения, которые являются установками эжекторного типа. Указанный хлопок-взрыв возникает в результате проблем с , неправильно или , прогара клапанов и по целому ряду других причин.

Главной угрозой для двигателя является то, что во впускном коллекторе во время хлопка создается избыток давления. Рост давления может вывести из строя или стать причиной некорректной работы датчика расхода воздуха, повредить воздуховод или корпус воздушного фильтра. Частыми случаями является разрушение самого впускного коллектора, особенно если элемент изготовлен из пластмассы.

Отметим, появление хлопков в коллекторе происходит не по причине перехода на газ, а в результате возникновения поломок самого ДВС и его систем. Другими словами, прострелы во впускном коллекторе могут возникнуть на машине и без газовой установки.

Еще добавим, что с выходом ГБО-4, которое является оборудованием впрыскового, а не эжекторного типа, такие хлопки практически полностью отсутствуют. Дело в том, что горючее в таких установках подается в небольших количествах на каждый цилиндр. Даже если в моторе имеются неисправности, роста количества хлопков из-за газа в коллекторе не наблюдается.

Моторное масло для двигателей на газу

Необходимо отметить, что специалисты после перехода на газ рекомендуют дополнительно для автомобилей с ГБО. Дело в том, что во время работы на смеси газа и воздуха температура в камере сгорания выше.

Смазка, которая предназначена для бензиновых и дизельных двигателей, может не соответствовать изменившимся условиям. Если просто, разница между расчетными рабочими температурами для бензинового и «газового» масла составляет около 200 градусов по Цельсию.

Для смазочного материала такая разница весьма значительна, некоторые бензиновые и попросту не справляются с такой повышенной температурой. В результате ухудшается защита деталей и узлов мотора. Также обычное масло при работе на газу может стать причиной усиленного коксования двигателя, так как смазка от нагрева «горит», после чего создается много нагара и отложений.

В результате двигатель коксуется, увеличивается расход масла на угар и т.п. Получается, после смены типа топлива, еще нужно отдельно подойти к вопросу подбора масла. Оптимально использовать масла, которые соответствуют требованиям и рекомендациям производителя ДВС по допускам, но также возможно их использование в газовых двигателях.

Сегодня выбор таких продуктов достаточно большой, так что с подбором моторного масла для двигателя на газу не возникает особых проблем. Такие смазки предлагают ведущие бренды Shell, Motul, отечественный Лукойл и другие известные производители.

Что в итоге

Как видно, любые проблемы с двигателем (как на газу, так и без газового оборудования) требуют комплексного подхода для их решения. Речь идет о развернутой , а также о диагностике ГБО и проверке его настроек.

Важно понимать, что на газу двигатель должен работать тихо и ровно, то есть аналогично работе на бензине. Не должно быть роста температуры ДВС, появления прострелов во впуске и выпуске, детонации и т.п. Допускается только небольшая потеря мощности мотора.

Сам газ изначально чище бензина (тем более на территории СНГ бензин содержит много примесей и добавок). Получается, во время работы на газу в моторе скапливается меньше грязи, нагара и отложений. В результате внутри такой двигатель чище.

Еще газ отличается тем, что не имеет свойства попадать в картер ДВС и , что особенно актуально для изношенных моторов с пробегом. Это дает возможность не так часто менять смазку, снижаются потери разжиженного масла на угар и т.д.

Читайте также

Преимущества и недостатки использования газобалонного оборудования. Обслуживание и эксплуатация ГБО, польза и вред газа для двигателя и штатных систем.

  • Принцип работы и отличительные особенности газовых форсунок. Основные парметры при выборе форсунок для ГБО 4. Какие газовые форсунки лучше купить.
  • Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.