Определение характеристик силового трансформатора без маркировки. Как по сопротивлению определить первичную обмотку трансформатора. Простые советы о том, как проверить трансформатор мультиметром на работоспособность Какое сопротивление первичной обмотки т

Инструкция

Внимательно осмотрите трансформатор. На некоторых моделях трансформаторов обмотки подписаны на верхнем слое изоляционной бумаги и подписаны соответствующие выводы. Трансформаторы ТПП полностью залиты компаундом зеленого , их еще называют военными ми. На них пишут марку, которая есть в справочнике по таким трансформаторам, и нумеруют выводы обмоток. Найти первичную обмотку трансформатора от или низковольтного блока питания довольно просто – она выполнена проводом меньшего сечения, чем вторичная обмотка. Найти первичную обмотку маломощного трансформатора от можно, измерив сопротивления всех обмоток. Обмотка с наибольшим сопротивлением будет первичной.

На старой ламповой аппаратуре применялись мощные многообмоточные типа ТАН. Сопротивление их высоковольтных обмоток отличалось незначительно, и по значению сопротивления обмотки нельзя было однозначно судить, какая обмотка является первичной. Чтобы найти первичную обмотку такого трансформатора, измерьте сопротивление каждой обмотки и запишите полученные значения на бумагу, отметьте также номера их выводов. Те обмотки, сопротивление которых стремится к нулю – это низковольтные обмотки, предназначенные для питания накала катодов радиоламп. Оставшиеся обмотки можно исследовать, подав на них напряжение.

Подключите мощную электролампу на 220В последовательно с исследуемой обмоткой трансформатора и включите в сеть полученную электрическую цепь. С помощью мультиметра, переключенного в режим измерения переменного напряжения, измерьте напряжение на обмотке трансформатора. После этого отключите питание и исследуйте другие обмотки. Запишите полученные результаты на бумагу. При исследовании обмоток будьте осторожны и никогда не переключайте обмотки при включенном сетевом питании. При подаче напряжения на обмотку не касайтесь выводов других обмоток, так как на них индуцируются соответствующие напряжения.

Сделайте сетевой кабель с держателем для предохранителя, установите предохранитель на ток 1А.

По сделанным записям найдите обмотку, на которой было наибольшее напряжение питания. Включите трансформатор этой обмоткой в сеть, подключив последовательно мультиметр, переключенный в режим измерения тока. Если ток без нагрузки не превышает 30-50мА для трансформаторов мощностью 200-300Вт, возможно, первичная обмотка найдена правильно.

Отключите сетевое питание, отключите мультиметр от исследуемой обмотки, переключите его в режим вольметра. Измерьте напряжение в сети и запишите полученное значение на бумагу.

Измерьте напряжение на найденных катодных обмотках. Если при сетевом напряжении 220-225В оно составляет 6,25-6,35В, значит, исследуемая обмотка является первичной.

Трансформатор тока является одним из электроизмерительных приборов. Для того чтобы его показания были корректными, необходимо периодически проводить комплекс работ по испытанию и проверке устройства. Все измерения должны проводиться специалистами электролаборатории согласно установленным правилам.

Инструкция

Составьте вольт-амперную характеристику тока. Данные измерения позволяют выявить работоспособность вторичной обмотки на наличии межвитковых замыканий. Как , для проведения данной проверки используют испытательный прибор Ретом-11 или аналогичное . Он измеряет зависимость напряжения вторичной обмотки и намагничивающего тока первичной обмотки. Далее составляется полученных данных, строится график и выявляются отклонения.

Определите коэффициент трансформации, который то, насколько точно трансформатор проводит преобразование проходящего через него тока. Рассчитанное значение сравнивается с классом точности, который указан на бирке устройства.

Проверьте соответствие маркировки выводов. При этом определяется, соответствует ли заводская маркировка трансформатора тока с действующим подключением. Для этого необходимо пофазно подать на питающую линию напряжение сети и выявить соответствие расцветки фаз.

Измерьте сопротивления изоляции. Для этого необходимо подать на первичные обмотки напряжение в 2500 В, а на вторичные – 500-1000 В. После этого сравните показания с нормами, указанными в таблице РД 34.45-51.300-97.

Проведите высоковольтные испытания изоляции. Это необходимо потому, что трансформаторы тока находятся непосредственно на линии нагрузки, что делает их элементом цепи, а это может привести к повреждению изоляции. Используйте для проверки высоковольтное испытательное напряжение.

При этом помните, что слой изоляции трансформатора тока состоит из полимера, поэтому к нему должно быть приложено боле низкое напряжение, нежели при испытании линии нагрузки. Сравните полученные показания с установленными нормами по электрической безопасности.

Видео по теме

Первичной называется обмотка трансформатора, на которую подается переменное напряжение извне. Остальные обмотки, напряжение с которых подается на потребители, называются вторичными. Определить, какая из обмоток предназначена для использования в качестве первичной, можно экспериментально.

Инструкция

Если точно известно, что является понижающим и рассчитан на питание от сети, измерьте омметром сопротивления всех его обмоток. У одной из них оно значительно больше, чем у остальных - она и является первичной. При измерении не касайтесь выводов трансформатора и щупов - несмотря на то, что он не включен в сеть, а измерительное мало,

Совершенно случайно читателю в руки может попасть старый выходной трансформатор, который, судя по внешнему виду, должен обладать неплохими характеристиками, однако полностью отсутствует информация, что же все-таки скрывается внутри его. К счастью, можно достаточно просто идентифицировать параметры старого выходного трансформатора, имея в распоряжении только цифровой универсальный вольтметр, так как их проектирование всегда следует строго определенным правилам.

Перед тем как приступать к проверке, необходимо зарисовать схему всех имеющихся на трансформаторе внешних соединений и перемычек, а затем удалить их. (Использование цифрового фотоаппарата для этих целей оказывается весьма плодотворным.) Несомненно, первичная обмотка должна иметь отвод от средней точки, чтобы обеспечить возможность использования трансформатора в двухтактной схеме, также на этой обмотке могут быть дополнительные отводы для обеспечения ультралинейного режима работы. Как правило, сопротивление обмотки на постоянном токе, замеряемое омметром между крайними точками обмотки, будет составлять максимальное значение сопротивления среди всех полученных значений и может колебаться от 100 до 300 Ом. Если обнаружена обмотка с подобным значением сопротивления, то, практически во всех случаях, можно считать, что идентифицированы клеммы трансформатора А 1 и А 2 соответствующие крайним точкам первичной обмотки.

У трансформаторов высокого качества первичная обмотка наматывается симметрично, то есть сопротивления между крайними выводами А 1 и А 2 и средней точкой высоковольтной обмотки всегда равны, поэтому следующим шагом является определение вывода, для которого сопротивление между ним и выводами А 1 и А 2 было бы равным половине сопротивления между крайними точками первичной обмотки. Однако более дешевые модели трансформаторов могут оказаться изготовленными не столь тщательно, поэтому сопротивления между двумя половинами обмотки могут не оказаться абсолютно равными между собой.

Так как для изготовления первичной обмотки трансформатора без всяких исключений используется провод одного сечения, то отвод, который расположен на витке, составляющем 20% от общего количества витков между центральным высоковольтным отводом и выводом А 1 либо А 2 , (конфигурация для отбора полной мощности усилителя), будет иметь и сопротивление, составляющее 20% от величины сопротивления между крайним выводом А 1 или А 2 и центральным отводом первичной обмотки. Если же трансформатор был предназначен для усилителя более высокого качества, то наиболее вероятным расположением этого отвода будет виток, соответствующий 47% сопротивления между этими же точками (конфигурация усилителя мощности, обеспечивающая минимальные искажения).

Вторичная обмотка, скорее всего, также будет иметь четное число выводов, либо будет иметь один отвод. Следует помнить, что в эпоху расцвета электронных ламп сопротивления громкоговорителей составляли либо 15 Ом (громкоговорители высшего качества), либо 4 Ом, поэтому параметры выходных трансформаторов были оптимизированы для этих значений импедансов.

Наиболее распространенным вариантом является использование двух идентичных секций, в которых обмотки используются последовательно включенными для сопротивления громкоговорителей 15 Ом, либо параллельно для сопротивлений 4 Ом (в действительности, 3,75 Ом). Если после того, как определена первичная обмотка трансформатора, обнаружены две обмотки, имеющие сопротивления по постоянному току порядка 0,7 Ом каждая, то, скорее всего, имеется стандартный образец трансформатора.

В трансформаторах высокого качества вышеизложенная идея получила свое дальнейшее развитие, когда вторичную обмотку представляют четыре идентичные секции. Включенные последовательно, они используются для согласования с нагрузкой 15 Ом, однако, будучи все включенными параллельно, они согласуют нагрузку 1 Ом. Это связано не с тем, что были доступны громкоговорители с импедансом 1 Ом (эпоха создания плохих по качеству кроссоверов пока еще не наступила), а с тем, что большая степень секционирования обмотки позволяла получить трансформатор более высокого качества. Поэтому следует искать четыре обмотки с приблизительно одинаковыми сопротивлениями по постоянному току и равными по величине примерно 0,3 Ом. Также необходимо иметь в виду, что помимо того, что контактное сопротивление зонда может составить очень значительную долю при проведении измерений очень малых сопротивлений (что вызывает настоятельную необходимость иметь не только чистый, но и надежный контакт), но также и то, что обычный 41/2 разрядный цифровой вольтметр не обеспечивает достаточной точности при измерениях таких малых значений сопротивлений, поэтому зачастую приходится строить догадки и предположения.

Если после идентификации первичной обмотки установлено, что все остающиеся обмотки оказываются соединенными вместе, то в наличии имеется вторичная обмотка с отводами, наибольшая величина сопротивления которой измеряется между выводами 0 Ом и (допустим) 16 Ом. При условии, что отсутствует отвод обмотки, согласующий сопротивление 8 Ом, то наименьшие значения сопротивления по постоянному току от любого из этих выводов будет являться отводом 4 Ом, а точка с сопротивлением 0 Ом окажется ближайшей к отводу 4 Ом (как правило, во вторичных обмотках с межвитковыми отводами стремятся использовать для отвода 4 Ом более толстый провод). Если же следует ожидать наличия отвода 8 Ом, то идентифицировать отводы следует с использованием метода измерений на переменном токе, который будет описан ниже.

Если назначение некоторых обмоток не удается определить, то, вероятнее всего, они предназначены для обратной связи, возможно действующей на катоды индивидуальных выходных ламп, либо для организации межкаскадной обратной связи.

В любом случае их более точная идентификация может быть проведена позже, так как следующим шагом будет определение коэффициента трансформации, а затем по полученным результатам определение импеданса первичной обмотки трансформатора.

Внимание. Несмотря на то, что при точном выполнении нижеприведенных измерений они не должны представлять опасности для сохранности выходного трансформатора, на выводах трансформатора могут возникнуть представляющие опасность для жизни человека напряжения. Поэтому, если возникают любого рода сомнения относительно имеющегося профессионального опыта, необходимого для выполнения описанных ниже измерений, то следует сразу отказаться от попыток их выполнения.

Выходные трансформаторы ламповых схем предназначены для снижения напряжения с нескольких сотен вольт до десятка вольт в частотном диапазоне от 20 Гц до 20 кГц, поэтому приложение сетевого напряжения к выводам первичной обмотки А 1 и А 2 не представляет для трансформатора никакой угрозы. При условии, что выводы А 1 и А 2 были определены правильно, следует подать сетевое напряжение непосредственно на выводы А 1 и А 2 и измерить напряжение на вторичной обмотке, чтобы определить коэффициент трансформации (или отношение количества витков первичной и вторичной обмоток). Строго говоря, в целях безопасности рекомендуется подавать не сетевое напряжение, а пониженное напряжение от ЛАТРа.

Тестирование трансформатора следует выполнять в следующем порядке:

Установите в сетевой шнур предохранитель с наименьшим из имеющихся значением тока плавкой вставки, например, предохранитель, рассчитанный на ток 3 А, окажется достаточным, но использование предохранителя на 1 А будет предпочтительнее;

Присоедините к сетевой вилке (желательно с заземляющим контактом) три коротких гибких провода. В силу очевидных причин они получили название «провода самоубийцы» и поэтому, когда не используются, должны храниться отдельно и под замком;

Припаяйте луженый наконечник на конец провода, помеченного ярлыком «земля», и привинтите наконечник к металлическому шасси трансформатора, используя специальные зазубренные шайбы, обеспечивающие очень хороший электрический контакт;

Припаяйте фазный провод к выводу А 1 , а провод нейтрали (нуля) к выводу А 2 ;

Убедитесь, что положение всех соединительных перемычек на вторичной об мотке зарисовано, после чего они все удалены;

Установите вид измерений цифрового вольтметра «переменное напряжение» и подключите его к выводам вторичной обмотки;

Убедившись, что шкала прибора находится в пределах видимости, включите в розетку сетевую вилку. Если на приборе сразу же не появятся результаты измерений, выдернете вилку из розетки. Если прибор фиксирует наличие на-

пряжения во вторичной обмотке, величину которого можно определить, дождитесь стабилизации показаний прибора, запишите полученный результат, выключите сетевое питание и отключите вилку от сетевой розетки;

Проверьте величину сетевого напряжения, для этого подключите цифровой вольтметр к выводам А 1 и А 2 трансформатора и включите повторно сетевое напряжение. Спишите показания прибора.

После этого можно определить коэффициент трансформации «N», используя следующее простое соотношение между напряжениями:

На первый взгляд эта процедура не покажется очень значительной, но следует помнить, что импедансы пропорциональны квадрату коэффициента трансформации, N 2 , следовательно, зная величину N можно определить импеданс первичной обмотки, так как уже известен импеданс вторичной.

Пример

Из всех многочисленных проводов у трансформатора имеется пять проводов, которые оказались электрически соединенными между собой (результаты были получены, когда проводились измерения электрического сопротивления с использованием цифрового тестера). Максимальное значение сопротивления между двумя проводами составляет 236 Ом, следовательно, выводы этих проводом могут быть помечены как А 1 и А 2 . После того, как одни щуп цифрового тестера оставался подключенным к выводу А 1 , было обнаружен второй провод, имеющий сопротивление 110 Ом. Полученное значение достаточно близко к значению сопротивления 118 Ом, чтобы эта точка могла оказаться выводом от центральной точки первичной обмотки трансформатора. Поэтому данную обмотку можно идентифицировать, как высоковольтную обмотку трансформатора. После этого следует переместить один из щупов цифрового тестера к среднему отводу высоковольтной обмотки и измерить сопротивления относительно двух оставшихся выводов. Значение сопротивления для одного вывода составило 29 Ом, а для второго было равно 32 Ом. Учитывая, что (29 Ом: 110 Ом) = 0,26, а (32 Ом: 118 Ом) = 0,27, можно с достаточной уверенностью предположить, что эти выводы используются в качестве ультралинейных отводов для получения максимальной мощности (то есть составляют примерно 20% обмотки). Один из выводов, для которого сопротивление относительно вывода А, имеет меньшее значение, представляет отвод к сетке 2 лампы V 1 , g 2(V1) а второй отвод - к сетке 2 лампы V 2 , g 2(V2) (рис. 5.23).

Вторичная обмотка имеет только две секции, поэтому, скорее всего, они предназначены для подключения нагрузки 4 Ом. Это предположение затем подтверждается измерениями сопротивлений обмоток секций, для первой из них оно составило 0,6 Ом, а для второй 0,8 Ом, что совпадает с типичными значениями для обмоток, предназначенных для согласования нагрузок 4 Ом.

Рис. 5.23 Идентификация обмоток трансформатора с неизвестными параметрами

При подключении трансформатора к сети было зафиксировано сетевое переменное напряжение 252 В, а напряжение на вторичных обмотках составляло 5,60 В. Подставляя полученные значения в формулу для расчета коэффициента трансформации, получим:

Импедансы обмоток изменяются пропорционально N 2 , поэтому отношение импедансов первичной обмотки к импедансу вторичной составляет 45 2 = 2025. Так как напряжение на вторичной обмотке измерялось на секции 4 Ом, импеданс первичной обмотки должен составлять (2025 х 4 Ом) = 8100 Ом. Такой результат является вполне допустимым, так как измерения с использованием сетевого напряжения 252 В и частотой 50 Гц могли сдвинуть рабочую точку ближе к области насыщения, что привело к погрешностям определения параметров, Поэтому полученное значение можно округлить до 8 кОм.

Далее необходимо определить начало и конец обмоток каждой из секций вторичной обмотки трансформатора. Это выполняется подключением только одного провода между одной и второй секциями, включая, таким образом, обмотки секций последовательно. После подачи напряжения на первичную обмотку, получим удвоенное значение напряжения на вторичной обмотке, по сравнению с индивидуальным напряжением на каждой. То есть напряжения двух секций дополняют друг друга и следовательно, подключенными оказались конец обмотки первой секции к началу обмотки второй, поэтому можно обозначить вывод секции, где кончается соединительный провод, как « + », а другой конец, как «-». Однако в случае, если напряжение на вторичной обмотке будет отсутствовать, то это будет означать что обмотки в двух секциях включены встречно друг другу, поэтому оба вывода можно будет обозначить, либо как « + », либо как «-».

После того, как все идентичные по характеристикам секции были определены, и для них определены точки начала обмоток, могут измеряться напряжения на всех оставшихся обмотках, быть определены для них коэффициенты трансформации, либо относительно первичной обмотки, либо относительно вторичной, в зависимости от того, какой способ окажется удобнее. Начиная с этого момента наиболее удобным оказывается использование схемы с кратким пометками, так, например, получение двукратного увеличения напряжения вторичной обмотки является очень показательным, так как этот факт может означать либо наличие секции с отводом от средней точки, либо отводы 4 Ом и 16 Ом.

Основные причины выхода из строя трансформаторов, в тракте звуковых частот

Трансформаторы относятся к электронным компонентам с наиболее длительным сроком службы, достигающим 40 и более лет. Все же иногда они могут выходить из строя. Обмотки трансформатора выполняются из провода, который может выходить из строя при протекании через него слишком высоких токов, а изоляция провода может оказаться пробитой, если напряжения, приложенные к обмоткам, превысят допустимые значения.

Наиболее частым случаем, при котором отказывают выходные трансформаторы, является такой, когда он вынужден работать на усилитель в режиме перегрузки. Это может произойти в двухтактном усилителе, когда одна выходная лампа полностью отключена (например, вышла из строя), а вторая работает с явной перегрузкой. Индуктивность рассеяния той половины трансформатора, которая должна пропускать ток отключенной лампы, стремиться поддерживать ток этой половины обмотки неизменным, что влечет за собой появление значительных перенапряжений в первичной обмотке (прежде всего за счет ЭДС самоиндукции), приводящих к пробою межвитковой изоляции. Процесс изменения напряжения на индуктивной обмотке во времени, характеризуется следующим дифференциальным уравнением:

Так как при разрыве тока, его производная стремится к бесконечности di /dt ≈ ∞, возникающая ЭДС самоиндукции развивает напряжение на полуобмотке в цепи вышедшей из строя лампы, значительно превышающее значение высоковольтного источника питания, которое способно легко пробить межвитковую изоляцию.

Также пробой изоляции может быть вызван неправильными условиями эксплуатации аппаратуры. Так. например, если в трансформатор проникла влага, то изоляция (в качестве которой чаще всего используется специальная бумага) становится более проводящей, что значительно увеличивает вероятность ее пробоя.

Также существует опасность выхода из строя выходного трансформатора в случае работы усилителя на громкоговорители, сопротивление которых значительно ниже необходимого. В этом случае, при больших уровнях громкости, токи, текущие через обмотки трансформатора, могут оказаться существенно превышенными.

Еще одна специфическая проблема в ряде случаев возникает в не очень качественных усилителях, например таких, которые одно время широко применялись для электрогитар. В силу того, что скорость нарастания тока при перегрузке очень высока, а качество выходного трансформатора, используемого в усилителях для электрогитар, как правило, не очень хорошее, то высокие значения индуктивности рассеяния могут привести к возникновению таких высоких значений напряжений (эдс самоиндукции) на обмотках, что не исключается возникновение внешней электрической дуги. При этом сам трансформатор мог быть спроектирован таким образом, чтобы благополучно выдержать подобное случайное перенапряжение. Напряжение, необходимое для возникновения электрической дуги, в некоторой степени зависит от степени загрязнения пути, по которому она развивается, поэтому загрязнения (особенно проводящие) снижают это дуговое напряжение. Именно поэтому углеродные следы, остающиеся от прежних дуговых процессов, несомненно, приводят к снижению напряжения, необходимого для возникновения нового дугового процесса.

Несмотря на то, что для развития дуги необходимы высокие напряжения, однажды возникнув, она может поддерживаться гораздо более низкими напряжений. Например, ксеноновая лампа, используемая в небольшом кинопроекторе, должна возбуждаться разрядом конденсатора, заряженным до нескольких сотен вольт, однако после возникновения разряда для поддержания электрической дуги необходимо напряжение всего 26 В и ток 75 А. Если в усилителе возникает электрическая дуга от анода, то путь ее развития всегда связан с точкой, имеющей очень низкое сопротивление относительно земли, так как высокое значение сопротивления, например, резистора сеточного смещения, либо катодного резистора, будет ограничивать величину тока, приводя к гашению дуги. Выводы подогревателей ламп непосредственно связаны с землей через центральный отвод низковольтной обмотки, поэтому наиболее вероятным местом для развития дуги является промежуток между анодом и выводами подогревателей электронных ламп, так как единственным ограничивающим фактором является сопротивление источника низковольтного напряжения.

Если известно, что усилитель может оказаться подверженным высоковольтным разрядам и дуговым процессам, то возможным решением проблемы (в зависимости от типа усилителя) будет включение в схему резистора, гасящего возникающую дугу, на участке между центральным отводом низковольтного (накального) источника и точкой нулевого потенциала высоковольтного источника. Например, использование (проволочного) резистора марки W/W c сопротивлением 4,7 кОм и мощностью 6 Вт. Однако «плавающий» низковольтный источник питания может в этом случае вызвать возникновение проблем, связанных с фоновыми шумами сети питания, в частности, из-за плохого качества спиралей накала (разводка, изолирующая обмазка, замыкания на шасси).

Рассмотрим и некоторые другие механизмы повреждения трансформаторов.

Слишком большой ток, проходящий через выходную лампу, может вызвать температурный уход эмиссии сетки, расплавление внутренних элементов конструкции лампы, вызывая прохождение тока чрезмерной силы через выходной трансформатор, приводящий к повреждению первичной обмотки. Простейший способ избавиться от данной проблемы, это визуальное наблюдение за усилителем. Если анод лампы становится вишнево-красным, необходимо немедленно выключить усилитель. Выходные каскады ламповых усилителей очень редко оснащаются плавкими предохранителями, отчасти из-за того, что нелинейный характер сопротивления плавкого предохранителя может вызвать дополнительные искажения, но часто также и из-за того, плавкий предохранитель не успевает перегреть достаточно быстро, чтобы успеть защитить выходные лампы.

В отличие от выходных, слаботочные входные и междукаскадные трансформаторы обычно повреждаются механически. Они весьма хрупкие, к тому же они наматываются очень тонким проводом, который легко рвется. В силу этого они требуют очень аккуратного обращения.

Трансформаторы, помещенные в экраны из магнитных материалов (например, из так называемого мю-металла), требуют очень осторожного обращения, их нельзя ронять, так как сильные механические воздействия нарушают доменную структуру магнитного материала, заметно снижая эффективность такого экрана. Например, на разделительном трансформаторе производства корпорации БиБиСи, предназначенном для работы с уровнями сигналов -45дБ, имелось специальное предупреждение на экранирующем кожухе, специально предостерегающее от приложения к нему механических воздействий.

Материалы магнитных сердечников могут деградировать со временем (это, например, оказалось причиной повреждений во время складского хранения силового трансформатора контрольного монитора), а автору совсем недавно довелось увидеть ряд дросселей и трансформаторов, отклонения характеристик которых от нормы могли быть объяснены только некачественным материалом магнитных сердечников. Это соображение всегда должно незримо присутствовать при выборе, который необходимо сделать между запасной частью, предусмотренной регламентом выполнения работ, либо немного более дорогой, но только что изготовленной.

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты. Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром?

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока. Если приходится работать с постоянным, вначале его надо преобразовывать.

На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника. При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток.

Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Определение межвиткового замыкания

Другой частой поломкой трансформаторов является межвитковое замыкание. Проверить импульсный трансформатор на предмет подобной неисправности с одним лишь мультиметром практически нереально. Однако, если привлечь обоняние, внимательность и острое зрение, задача вполне может решиться.

Немного теории. Проволока на трансформаторе изолируется исключительно собственным лаковым покрытием. Если имеет место пробой изоляции, сопротивление межу соседними витками остается, в результате чего место контакта нагревается. Именно поэтому первым делом следует тщательно осмотреть прибор на предмет появления потеков, почернений, подгоревшей бумаги, вздутий и запаха гари.

Далее стараемся определить тип трансформатора. Как только это получается, по специализированным справочникам можно посмотреть сопротивление его обмоток. Далее переключаем тестер в режим мегаомметра и начинаем измерять сопротивление изоляции обмоток. В данном случае тестер импульсных трансформаторов – это обычный мультиметр.

Каждое измерение следует сравнить с указанным в справочнике. Если имеет место расхождение более чем на 50%, значит, обмотка неисправна.

Если же сопротивление обмоток по тем или иным причинам не указано, в справочнике обязательно должны быть приведены иные данные: тип и сечение провода, а также количество витков. С их помощью можно вычислить желаемый показатель самостоятельно.

Проверка бытовых понижающих устройств

Следует отметить момент проверки тестером-мультиметром классических трансформаторов понижения. Найти их можно практически во всех блоках питания, которые понижают входящее напряжение с 220 Вольт до выходящего в 5-30 Вольт.

Первым делом проверяется первичная обмотка, на которую подается напряжение в 220 Вольт. Признаки неисправности первичной обмотки:

  • малейшая видимость дыма;
  • запах гари;
  • треск.

В этом случае следует сразу прекращать эксперимент.

Если же все нормально, можно переходить к измерению на вторичных обмотках. Прикасаться к ним можно только контактами тестера (щупами). Если полученные результаты меньше контрольных минимум на 20%, значит обмотка неисправна.

К сожалению, протестировать такой токовый блок можно только в тех случаях, если имеется полностью аналогичный и гарантированно рабочий блок, так как именно с него и будут собираться контрольные данные. Также следует помнить, что при работе с показателями порядка 10 Ом некоторые тестеры могут искажать результаты.

Измерение тока холостого хода

Если все тестирования показали, что трансформатор полностью исправен, не лишним будет провести еще одну диагностику – на ток трансформатора холостого хода. Чаще всего он равняется 0,1-0,15 от номинального показателя, то есть тока под нагрузкой.

Для проведения проверки измерительный прибор переключают в режим амперметра. Важный момент! Мультиметр к испытуемому трансформатору следует подключать замкнутым накоротко.

Это важно, потому что во время подачи электроэнергии на обмотку трансформатора сила тока возрастает до нескольких сот раз в сравнении с номинальным. После этого щупы тестера размыкаются, и на экране отображаются показатели. Именно они и отображают величину тока без нагрузки, тока холостого хода. Аналогичным образом производится измерение показателей и на вторичных обмотках.

Для измерения напряжения к трансформатору чаще всего подключают реостат. Если же его под рукой нет, в ход может пойти спираль из вольфрама или ряд лампочек.

Для увеличения нагрузки увеличивают количество лампочек или же сокращают количество витков спирали.

Как можно видеть, для проверки даже не потребуется никакой особый тестер. Подойдет вполне обычный мультиметр. Крайне желательно иметь хотя бы приблизительное понятие о принципах работы и устройстве трансформаторов, но для успешного измерения достаточно всего лишь уметь переключать прибор в режим омметра.

Основным элементом источника питания цифровых приборов является устройство преобразования тока и напряжения. Поэтому при поломке оборудования часто подозрение падает именно на него. Проще всего проверить импульсный трансформатор мультиметром. Существуют несколько способов измерений. Какой выбрать - зависит от ситуации и предполагаемых повреждений. При этом самостоятельно выполнить проверку любым из них совсем несложно.

Конструкция преобразователя

Перед тем как приступить непосредственно к проверке импульсного трансформатора (ИТ), желательно знать, как он устроен, понимать принцип действия и различать существующие виды. Такое импульсное устройство используется не только как часть блока питания, его задействуют при построении защиты от короткого замыкания в режиме холостого хода и в качестве стабилизирующего элемента.

Импульсный трансформатор используется для преобразования величины тока и напряжения без изменения их формы. То есть он может изменить амплитуду и полярность различного рода импульса, согласовать между собой различные электронные каскады, создать надёжную и устойчивую обратную связь. Поэтому главным требованием, предъявляемым к нему, является сохранение формы импульса.

Магнитопровод в трансформаторе выполняется из пластин электротехнической стали, кроме тороидальной формы, в которой он сделан из рулонного или ферромагнитного материала. Каркасы катушек размещаются на изоляторах, а провода используются только медные. Толщина пластин подбирается в зависимости от частоты.

Расположение обмоток может быть выполнено спиральным, коническим и цилиндрическим видом. Особенностью первого типа является использование не проволоки, а широкой тонкой фольгированной ленты. Второго - выполняются с различной толщиной изоляции, влияющей на напряжение между первичной и вторичной обмотки. Третьего же типа представляют собой конструкции с намотанной проволокой на стержень по спирали.

Принцип работы устройства

Принцип действия ИТ основан на возникновении электромагнитной индукции. Так, если на первичную обмотку подать напряжение, то по ней начнёт протекать переменный ток. Его появление приведёт к возникновению непостоянного по своей величине магнитного потока. Таким образом, эта катушка является своего рода источником магнитного поля. Этот поток по короткозамкнутому сердечнику передаётся на вторичную обмотку, индуцируя на ней электродвижущую силу (ЭДС).

Величина напряжения на выходе зависит от отношения числа витков между первичной обмоткой и вторичной, а от сечения используемого провода зависит максимальная сила тока. При подключении к выходу мощной нагрузки увеличивается потребление тока, что при малом сечении проволоки приводит трансформатор к перегреву, повреждению изоляции и перегоранию.

Работа ИТ зависит также от частоты сигнала, который подаётся на первичную обмотку. Чем выше будет эта частота, тем меньшие потери будут происходить при трансформации энергии. Поэтому при высокой скорости подаваемых импульсов размеры устройства могут быть меньшими. Достигается это работой магнитопровода в режиме насыщения, а для снижения остаточной индукции используется небольшой воздушный зазор. Этот принцип и используется при построении ИТ, на который подаётся сигнал с длительностью всего в несколько микросекунд.

Подготовка и проверка

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить.

С цифровым мультиметром проще. В его конструкции используется анализатор, который следит за состоянием батареи и при ухудшении её параметров выводит на экран тестера сообщение о необходимой её замене.

При проверке параметров трансформатора используется два принципиально разных подхода. Первый заключается в оценке исправности непосредственно в схеме, а второй - автономно от неё. Но важно понимать, что если ИТ не выпаять из схемы, или хотя бы не отсоединить ряд выводов, то погрешность измерения может быть очень большой. Связано это с другими радиоэлементами, шунтирующими вход и выход устройства.

Порядок выявления дефектов

Важным этапом проверки трансформатора мультиметром является определение обмоток. При этом их направление существенной роли не играет. Сделать это можно по маркировке, нанесённой на устройство. Обычно на трансформаторе указывается определённый код.

В отдельных случаях на ИТ может быть нанесена схема расположения обмоток или даже подписаны их выводы. Если же трансформатор установлен в прибор, то в нахождении распиновки поможет принципиальная электрическая схема или спецификация. Также часто обозначения обмоток, а именно напряжения и общий вывод, подписываются на самом текстолите платы возле разъёмов, к которым подключается устройство.

После того как выводы определены, можно приступать непосредственно к проверке трансформатора. Перечень неисправностей, которые могут возникнуть в устройстве, ограничен четырьмя пунктами:

  • повреждение сердечника;
  • отгоревший контакт;
  • пробой изоляции, приводящий к межвитковому или корпусному замыканию;
  • разрыв проволоки.

Последовательность проверки сводится к первоначальному внешнему осмотру трансформатора. Он внимательно проверяется на почернения, сколы, а также запах. Если явных повреждений не выявлено, то переходят к измерению мультиметром.

Для проверки целостности обмоток лучше всего использовать цифровой тестер, но можно исследовать их и с помощью стрелочного. В первом случае используется режим прозвонки диодов, обозначенный на мультиметре символом -|>| --))). Для определения обрыва к цифровому прибору подключаются измерительные провода. Один вставляется в разъёмы, обозначенные V/Ω, а второй - в COM. Галетный переключатель переводится в область прозвонки. Измерительными щупами последовательно дотрагиваются до каждой обмотки, красным - к одному её выводу, а чёрным - к другому. При её целостности мультиметр запищит.

Аналоговым тестером проверка выполняется в режиме замера сопротивлений. Для этого на тестере выбирается наименьший диапазон измерения сопротивлений. Это может быть реализовано через кнопки или переключатель. Щупами прибора, так же как и в случае с цифровым мультиметром, дотрагиваются до начала и конца обмотки. При её повреждении стрелка останется на месте и не отклонится.

Таким же образом происходит проверка на короткое замыкание. Возникнуть КЗ может из-за пробоя изоляции. В результате сопротивление обмотки уменьшится, что приведёт к перераспределению в устройстве магнитного потока. Для проведения тестирования мультиметр переключается в режим проверки сопротивления. Дотрагиваясь щупами до обмоток, смотрят результат на цифровом дисплее или на шкале (отклонение стрелки). Этот результат не должен быть менее 10 Ом.

Чтобы убедиться в отсутствии КЗ на магнитопровод, одним щупом прикасаются к «железу» трансформатора, а вторым - последовательно к каждой обмотке. Отклонения стрелки или появления звукового сигнала быть не должно. Стоит отметить, что прозвонить тестером межвитковое замыкание можно только в приближённом виде, так как погрешность прибора довольно высока.

Измерения напряжения и тока

При подозрении на неисправность трансформатора тестирование можно провести, и не отключая его полностью от схемы. Такой метод проверки называется прямым, но связан с риском получить удар электрическим током. Суть действий в измерении тока заключается в выполнении следующих этапов:

  • из схемы выпаивается одна из ножек вторичной обмотки;
  • провод чёрного цвета вставляется в гнездо мультиметра COM, а красного - подключается к разъёму, обозначенному буквой А;
  • переключатель устройства переводится в положение, соответствующее зоне ACA.
  • щупом, подключённым к красному проводу, касаются свободной ножки, а к чёрному - места, к которому она была припаяна.

При подаче напряжения, если трансформатор работоспособный, через него начнёт протекать ток, значение которого и можно будет увидеть на экране тестера. Если ИТ имеет несколько вторичных обмоток, то сила тока проверяется на каждой из них.

Измерение же напряжения заключается в следующем. Схема с установленным трансформатором подключается к источнику питания, а затем тестер переключается на область ACV (переменный сигнал). Штекеры проводов вставляются в гнёзда V/Ω и COM и прикасаются к началу и концу обмотки. Если ИТ исправен, то на экране отобразится результат.

Снятие характеристики

Чтобы иметь возможность проверить трансформатор мультиметром таким методом, необходима его вольт-амперная характеристика. Этот график отображает зависимость между разностью потенциалов на выводах вторичных обмоток и силы тока, приводящей к их намагничиванию.

Суть метода лежит в следующем: трансформатор извлекается из схемы, на его вторичную обмотку с помощью генератора подаются импульсы разной величины. Подводимой на катушку мощности должно быть достаточно для насыщения магнитопровода. Каждый раз при изменении импульса измеряется сила тока в катушке и напряжение на выходе источника, а магнитопровод размагничивается. Для этого после снятия напряжения ток в обмотке увеличивается за несколько подходов, после чего снижается до нуля.

По мере снятия ВАХ её реальная характеристика сравнивается с эталонной. Снижение её крутизны свидетельствует o появление в трансформаторе межвиткового замыкания. Важно отметить, что для построения вольт-амперной характеристики необходимо использовать мультиметр с электродинамической головкой (стрелочный).

Таким образом, используя обычный мультиметр, можно с большой долей вероятности определить работоспособность ИТ , но для этого лучше всего выполнить комплекс измерений. Хотя для правильной интерпретации результата, следует понимать принцип работы устройства и представлять, какие процессы происходят в нём, но в принципе для успешного измерения достаточно лишь уметь переключать прибор в разные режимы.

Трансформатор, история применения которого насчитывает почти полтора века, все это время служит человечеству верой и правдой. Его назначение — преобразование напряжения переменного тока. Это одно из немногих устройств, КПД которого может достигать почти 100%.

Как рассчитать и намотать обмотки трансформатора, каким может быть его сердечник, каковы особенности конструкции трансформаторов различного назначения, как они работают — вопросы, которые могут заинтересовать многих. Ниже предлагаются ответы на большинство этих вопросов.

Что представляет собой трансформатор?

Вернуться к оглавлению

Немного истории

В 70-х годах XIX века русский ученый П.Н. Яблочков изобрел электродуговой источник света — «свечу Яблочкова». Первоначально источниками питания дуги служили мощные гальванические батареи, но аноды в этом случае сгорали быстрее. Тогда ученый решил использовать в качестве источника тока для своего изобретения генератор переменного тока.

В этом случае возникало другое затруднение: после того как зажигалась одна электрическая свеча, из-за уменьшения напряжения на зажимах генератора возгорание других светильников было затруднено. Задача была решена, когда для питания каждого источника света был применен свой трансформатор. Эти первые трансформаторы имели незамкнутые сердечники из пучков стальной проволоки и, как следствие, обладали низким КПД. Трансформаторы с замкнутыми сердечниками, подобные современным, появились лишь спустя 9 лет.

Вернуться к оглавлению

Как устроен и как работает трансформатор?

Рисунок 1. Схема самого простого трансформатора.

Самый простой трансформатор — это сердечник из вещества с большой магнитной проницаемостью и две намотанных на него обмотки (рис. 1а). При пропускании через первичную обмотку переменного тока силой I 1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I 2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

U 1 / U 2 ≈ N 1 / N 2, где

N 1 и N 2 — число витков в обмотках.

Отношение U 1 / U 2 называют еще коэффициентом трансформации (k). Если U 1 > U 2 , трансформатор называют повышающим (рис. 1б), при U 1 < U 2 — понижающим (рис 1в). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы.

Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим. Вторичная обмотка необязательно одна — их может быть и несколько. Из равенства мощностей в обмотках следует, что токи в них обратно пропорциональны числу витков:

I 1 / I 2 ≈ N 2 / N 1.

Если вторичная обмотка — составная часть первичной (или первичная — вторичной), трансформатор превращается в автотрансформатор. На рис. 1г и 1д показаны схемы, соответственно, понижающего и повышающего автотрансформаторов.

Переменное магнитное поле вызывает появление в сердечнике вихревых токов, которые нагревают его, на что бесполезно тратится часть энергии. Чтобы уменьшить эти потери, сердечники набирают из отдельных, изолированных друг от друга листов специальной трансформаторной стали с малой энергией перемагничивания.

Чаще всего в современных трансформаторах используются магнитопроводы трех типов:

  1. Стержневые (П-образные), состоящие из двух стержней с обмотками и ярма, соединяющего их. Именно так обычно устроены сердечники мощных трансформаторов.
  2. Броневые (Ш-образные). Магнитопровод представляет собой ярмо, внутри которого находится стержень с обмоткой. Ярмо защищает каждую обмотку трансформатора от внешних воздействий — отсюда такое название. Чаще применяется в маломощных трансформаторах для электронных схем.
  3. Тороидальные — магнитопровод, имеющий форму тора, состоит из намотанной плотным рулоном трансформаторной ленты. Преимущества — относительно малый вес, высокий КПД, минимум помех. Недостаток — сложность намотки.

Вернуться к оглавлению

Как осуществить расчет трансформатора?

Важнейшие параметры трансформатора — номинальные значения токов и напряжений и мощности, на которые он рассчитан. Абсолютная точность при расчетах характеристик трансформатора по этим параметрам особого значения не имеет, поэтому можно ограничиться приблизительными значениями.

Очередность расчетов выглядит следующим образом:

  1. Расчет тока через вторичную обмотку с учетом потерь: I 2 = 1,5 * I 2н, где I 2н — номинальный ток в ней.
  2. Расчет мощности, снимаемой с вторичной обмотки: Р 2 = U 2 * I 2 , где U 2 — напряжение на ней. Если такая обмотка не одна, то результат — сумма их мощностей.
  3. Определение результирующей мощности: Р Т = 1,25 * P 2 при КПД порядка 80%.
  4. Расчет силы тока через первичную обмотку трансформатора: I 1 = P Т / U 1 , где U 1 — напряжение на ней.
  5. Площадь требующегося сечения магнитопровода: S = 1,3 * √P Т, где S измеряется в см 2 .
  6. Количество витков для первичной обмотки трансформатора: N 1 = 50 * U 1 / S, где S измеряется в см 2 .
  7. Количество витков для его вторичной обмотки: N 2 = 55 * U 2 / S, где S измеряется в см 2 .
  8. Диаметр проводников любой из обмоток трансформатора: d = 0,632 * √I, где I — сила тока в ней. Формула верна для медного провода.

Например, вторичная обмотка трансформатора, включаемого в сеть напряжением 220 В, должна давать ток 6,7 А при напряжении 36 В. Рассчитать параметры трансформатора.

  1. I 2 = 1,5 *6,7 А = 10 А.
  2. P 2 = 36 В * 10 А = 360 Вт.
  3. P Т = 1,25 *360 Вт = 450 Вт.
  4. I 1 = 450 Вт / 220 В ≈ 2 А.
  5. S = 1,3 * √450 (см 2) ≈ 25 см 2.
  6. N 1 = 50 * 220 / 25 = 440 витков.
  7. N 2 = 55 * 36 / 25 = 79 витков.
  8. d 1 = 0,632 * √2 (мм) = 0,9 мм, d 1 = 0,632 * √10 (мм) = 2 мм.

Если провода нужного диаметра отсутствуют, то можно заменить один толстый провод несколькими более тонкими, соединенными параллельно. Площадь сечения проводника диаметром d можно рассчитать по формуле: s = 0,8 * d 2 .

Например, нужен провод диаметром 2 мм, а имеется только проводник диаметром 1,2 мм. Площадь сечения нужного провода s = 0,8 * 4 (мм 2) = 3,2 мм 2 , площадь имеющегося, вычисленная по той же формуле, равна 1,1 мм 2 . Легко понять, что один проводник диаметром 2 мм можно заменить тремя с диаметром 1,2 мм.

Вернуться к оглавлению

Изготовление трансформатора

Процесс изготовления силового трансформатора складывается из ряда последовательных операций.

Вернуться к оглавлению

Сборка каркасов катушек для стержневого или броневого сердечника

Рисунок 2. Схема сборки каркаса для трансформатора.

Довольно удобным материалом для сборки этих каркасов являются картон или прессшпан. Еще более крепкий каркас можно изготовить из пластика. Каркас в сборе изображен на рис. 2а. Он собран из деталей, изображенных на рисунках 2б-2г. Должно быть изготовлено по два экземпляра каждой детали. Дырочки в щечках (г) предназначены для выводов.

Порядок сборки каркаса:

  • две щечки накладываются друг на друга;
  • в их окна вкладываются детали (б) и разводятся, одна вверх, вторая вниз;
  • детали (в) устанавливаются так, чтобы их выступы совпали с выемками деталей (б).

Полученный каркас достаточно прочен и уже не рассыпается. Перед намоткой катушек заранее готовятся прокладки (рис. 2д) из полосок кабельной бумаги. Полоски аккуратно надрезаются по краям на глубину несколько мм. Эти надрезы, примыкая к щеткам, будут предохранять витки очередного слоя от проваливания в область предыдущего.

Вернуться к оглавлению

Намотка катушек

Рисунок 3. Схема петли для катушки.

Перед намоткой следует заготовить отрезки гибкого многожильного провода в термостойкой изоляции для выводов и отрезки термостойкого кембрика. Намотка производится так, чтобы провод укладывался виток к витку с некоторым натяжением. Последующие витки должны прижимать предыдущие. Чтобы предотвратить проваливание витков возле щечки, желательно очередной ряд не доматывать до нее на несколько мм, заполняя свободные участки шпагатом или нитками.

После окончания намотки каждого ряда натяжение провода должно сохраняться, чтобы при наложении прокладки из кабельной бумаги намотанная часть не распускалась. Такие прокладки должны укладываться после каждого слоя.

Если наматываемый провод тонкий, то к началу и концу обмотки, а также к отводам от нее аккуратно припаиваются заготовленные отрезки гибкого многожильного провода. Место спайки изолируется. Если обмоточный провод достаточно толстый, выводы и отводы (в виде петель) делаются из этого же провода. И на выводы, и на отводы следует надеть отрезки кембрика.

Петля (рис. 3а) пропускается сквозь отверстие сложенной вдвое полоски из плотной бумаги или хлопчатобумажной ленты, которую затягивают после того, как она прижата следующими витками (рис. 2б). Пример отвода от тонкого обмоточного провода показан на рис. 2в.

Примерно так же крепят концы обмотки из толстого провода, но используется только хлопчатобумажная лента. Схема закрепления начала обмотки показана на рис. 2г, ее конца — на рис. 2д.

И несколько слов о том, как намотать обмотку тороидального трансформатора. Обычно для их намотки используются самодельные челноки, на поверхность которых наматывается достаточный запас провода. Челнок с проводом должен проходить в отверстие тороидального магнитопровода.

Рисунок 4. Схема обода колеса велосипеда.

Гораздо проще осуществить намотку с помощью приспособления, основой которого является обод колеса велосипеда (рис. 4). Обод распиливается в одном месте, продевается в отверстие магнитопровода, после чего разрезанные части аккуратно соединяются. Затем на его внешнюю поверхность наматывается обмоточный провод необходимой длины с небольшим запасом. Для удобства обод может быть подвешен своей верхней частью на забитый гвоздь, штырь или какой-нибудь другой подходящий подвес. Намотанный провод удобно зафиксировать подходящим резиновым кольцом.

Обмотка наматывается за счет вращения обода. Завершив каждый оборот, следует передвинуть на соответствующее расстояние резиновое кольцо. Витки следует укладывать аккуратно, с натяжением. Выводы и отводы можно формировать так же, как у упомянутых выше катушек. Каждый слой и обмотка обязательно разделяются слоем изоляции. Поверх последнего слоя трансформатор обматывается киперной лентой и пропитывается лаком.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.