Автономная система электромотором. Электромобиль: история, устройство, плюсы и минусы. История электромобилей внииэм – внииит – нпо «квант»

К Геннадию Алексеевичу я пришёл в январе 2010 года с таким напутствием одного из его бывших коллег: ему 83, можешь не пытаться, вряд ли он что вспомнит…

Зверев жил в обычной пятиэтажке в районе Рязанского проспекта, с женой-ровесницей.

Когда договаривались о встрече, он растерянно сказал: «Даже не знаю, где мы сможем поговорить, отойти надолго я не могу – жена болеет, нельзя её оставлять. И к нам не очень удобно…».

Стало невыносимо неловко . Как может быть неловко розовощёкому молодому человеку, вторгающемуся в быт старика, пусть ненадолго, но с эгоистическими потребностями. Но Геннадий Алексеевич великодушно смикшировал эту неловкость со своей непосредственностью: «А, ладно, чего уж там, заходите ко мне! Только на бардак внимания не обращайте».

Геннадий Алексеевич Зверев стоял, что называется, у истоков советского электромобилестроения. Он конструировал один из главных элементов – системы управления тяговыми электродвигателями. В середине 1950 годов в СССР ещё не было никакого опыта такого проектирования, всё приходилось делать впервые, перенося опыт из смежных отраслей. К счастью, прогноз коллеги не сбылся: Геннадий Алексеевич помнит всё прекрасно, всем бы в его возрасте такую память. И квалификации электронщика не растерял: он достаточно легко вспоминал самые мелкие схемотехнические подробности разработки пятидесятилетней давности. А дальше он расскажет обо всё сам.

– Моя специальность — инженер-механик электрического транспорта. Поработав после института на железной дороге, я перешёл в закрытый НИИ-496, которым тогда руководил Андроник Иосифьян, член-корр и вообще большой авторитет в области электротехники. Я пошёл туда потому, что в НИИ-496 организовывал свой отдел Евгений Аватков, легендарная личность, большой энтузиаст переменного тока. Он стал моим первым начальником на новом месте. Это было в 1957 году, в декабре.

Первая страница трудовой книжки Зверева

Тогда начались работы по асинхронным двигателям для транспорта, впервые в СССР. Пожалуй, по некоторым направлениям мы были первыми в мире. Или нам так казалось – сравнить-то было не с чем, никакой западной технической литературы не было. Мы точно начинали с нуля, с чистого листа.

Институт наш находился у Красных Ворот, напротив МПС. Очень квалифицированные люди там собрались, интересные. Часть нашего отдела начала работу над электровозами на переменном токе, это было вновинку. Создали несколько групп: кто-то работал над двигателем, кто-то над преобразователем тока и системой управления — для асинхронного двигателя тогда не было никаких шаблонных решений, никаких готовых схем.

Работа по конвертации электровоза на переменный ток

Идею применения асинхронного привода настойчиво проталкивал сам Аватков. Тогда весь наш транспорт работал на двигателях постоянного тока, они сложнее конструктивно и в эксплуатации, из-за того, что там на валу стоит коллектор со щетками, за которыми необходимо следить, чистить все время. Мы бывали на разных заводах и видели, сколько машин с двигателями постоянного тока находилось в ремонте, как люди задыхались от этих ремонтов. И главная причина – изношенные коллекторы.

А асинхронный двигатель можно запечатать в короб — ему не требуется никакого обслуживания. Его можно опустить в воду, он и там будет работать. Нет коллектора, значит и удельные характеристики лучше, и в массе выигрыш. Но такие моторы производились у нас в стране только на 50 Герц, всего одна модель на весь СССР! Это был неприхотливый двигатель, применялся во множестве механизмов, но только там, где не требовалось регулировать скорость его вращения путём изменения частоты тока. Тогда просто не было силовой электроники, позволявшей это делать!

Аватков вас сразу «бросил» на создание двигателя для электромобиля?

– Нет, первая моя работа была с моряками, делал им систему заряда батарей для подводной лодки. Там стояли свинцово-кислотные аккумуляторы: большая такая бандура получилась! У нас был комплексный испытательный стенд в Истре, даже Горшков – министр морского флота – приезжал туда. Поздравлял: мы первые сдали работу по электроагрегатам. Вот после этого Аватков меня и переключил на электромобили. В 1960 году.

Откуда вообще возникла идея проектировать электромобиль? Был госзаказ или ваша институтская инициатива?

– Сложились вместе два обстоятельства – всплеск государственных инициатив по заботе о сохранении природы и наличие у нас почти готовой разработки по асинхронному приводу.

Я сейчас не могу точно сказать, кто конкретно выдвинул идею электромобиля, но с 1960 года эта работа была включена в план наравне с электровозной тематикой. В принципе, это была экспериментальная работа, никто не знал, что у нас получится. Асинхронный мотор изначально проектировался под напряжение в 300 Вольт, поэтому начали с его адаптации под более низкое напряжение. Пришлось перемотать обмотки, и ещё кое-какие изменения внести. Двигатель был трёхфазным, в первой фазе было по две последовательных обмотки, их мы переключили на параллельное соединение и двигатель стал работать от 190 Вольт.


первый асинхронный двигатель для электромобилей в СССР

Это не было оптимальным вариантом, но для эксперимента годилось. А на будущее мы закладывали разработку специального электродвигателя. Были сделаны расчёты – может, и не очень достоверные, но уж какие смогли. Выходило, что нам достаточно было двигателя в 15кВт. Это для полуторатонной машины, предназначенной для развоза по городу мелких товаров.

Потом стали подбирать аккумуляторы. Поначалу использовали обычные стартерные АКБ, 12-вольтовые, от «УАЗика», на 60 А-ч, подольского завода. Они нам по указанию министерства электротехнической промышленности выдали 22 батареи, вот с ними мы и работали. Потом попытались вместе с Смольковой Валентиной Сергеевной, которая тогда была директором подольского НИИСТА (института стартерных аккумуляторов), усовершенствовать их каким-то образом. Хотели сделать её устойчивой к большим зарядным токам, чтобы сократить время зарядки. В Подольске долго работали, но так ничего и не удалось им сделать… Получилась только батарея 6ЭМ-60, со слегка сглаженной характеристикой разряда.

Вы уже работали с каким-то готовым шасси или только проектировали электрическую часть?

– У нас был УАЗ-451, как макет для компоновочных работ. Эти 22 аккумулятора мы установили в двух контейнерах по бортам, чтобы просто прикинуть расположение. Тогда ещё не было готового преобразователя напряжения и, соответственно, машина эта не ездила.

А что собой представлял преобразователь?

– Трехфазный инвертор напряжения, для питания каждой фазы двигателя. Инвертор для силовой части в те годы можно было сделать только на тиристорах, мощных транзисторов ещё не было. А тиристоры в СССР изготавливались только на Сталинском электротехническом заводе в Таллине и были жутким дефицитом. Не помню их маркировку, увы. Это были быстродействующие тиристоры, с относительно небольшим (по тем временам) временем срабатывания.

Тиристор – это простой полупроводник, фактически управляемый диод, для открытия которого требуется короткий импульс. Но импульс этот надо гасить, а для этого применяются LC-контуры. Вам схему нарисовать?

Геннадий Алексеевич с учительским терпением рисует схему своего преобразователя и подробно объясняет принцип его работы. По всему выходит, что ему удалось из очень ограниченного набора деталей, буквально из подручных материалов соорудить довольно интересную схему. В ней для «гашения» главных тиристоров применялись другие тиристоры, коммутирующие, нагруженные на ёмкость и два дросселя. «Изюминка» этого решения именно в двух дросселях, позволяющих «перекрывать» фазы работы электродвигателя с большой точностью. И его ещё нужно было вписать в какие-то разумные габариты, а они тоже зависят от электрических характеристик, в частности, от времени восстановления тиристоров.

– Инвертор требовал охлаждения. У нас набиралось 12 тиристоров и 6 мощных диодов, и для каждой «тройки» нужен был свой воздушный радиатор, для безопасности. Ведь как ни изолируй корпуса и выводы полупроводников, опасность замыкания всё равно остаётся, тем более в автомобиле, с его вибрациями.

Сделали для преобразователя специальный ящик, в котором все тиристоры располагались с левой стороны по отношении к вводу, а блок управления справа. Тиристоры легко вынимались из этого ящика, для замены. Сам ящик охлаждался вентилятором, эту систему нам сделал другой отдел института (НИИ-496 к тому времени уже переименовали во ВНИИЭМ – институт электронного машиностроения), который, специально занимался охлаждением преобразовательных установок. Воздух засасывался с переднего края, выдувался из инвертора в двигатель, а потом и в аккумуляторную батарею, поскольку нужно было сдувать с неё кислотные пары.

– А разве нельзя было заказать нашей электронной промышленности производство транзисторов или тиристоров по вашему ТЗ?

– Нет, что вы… Для таких энтузиастов, как мы никто бы ничего не стал делать. Это же был эксперимент, опытная разработка. И хотя мы всем показывали этот электромобиль, но никто не сказал, что можно разработать тиристор с нужными нам параметрами. Это только для военных проектов можно было сделать. Ну, или для космоса. А нам и обычных, серийных порой не доставалось, Минэлектротехпром распределял элементы по каким-то ведомым только ему соображениям.

Единственный человек, кто нам очень помогал – Иосиф Гоберман, директор Главмосавтотранса. Ему нравилась сама идея электромобиля, он верил, что они могут заменить в городских перевозках УАЗы, РАФы и даже ГАЗы с ЗиЛами. Гоберман дружил с всесильным властителем Москвы Виктором Гришиным. И с его подачи даже Гришин однажды посетил нас, посмотрел наши машины. Но это было позже, в конце семидесятых.

Гришин и Гоберман на 34-ом автокомбинате, 1978 год

Я несколько раз сам ходил к Гоберману за помощью. Вот меняю я в схеме какой-то элемент (а делать это приходилось довольно часто) – значит, я должен на завод-изготовитель поехать, стоять часами на коленях, чтобы подписали разрешение на применение. А Гоберман спрашивал: «Что тебе нужно?» — и назавтра это у меня было. Даже порой представители заводов сами ко мне приезжали, чтоб я только подписал бумаги и взял этот элемент. Откуда у него было такое влияние — я не знаю, может и Гришин помогал.

Давайте вернемся к электромобилю. Он сразу поехал или были какие-то проблемы?

– Проблемы были, конечно. Очень долго я занимался монтажом на автомобиль нашей аппаратуры. Когда мне принесли первый экземпляр преобразователя, я побежал и остановил их производство, там были серьёзные ошибки в компоновке, и качество сборки аховое. В электромобиле ведь помехи – на каждом шагу, кругом громадные и импульсные токи. Эти токи наводили в соседних проводах лишние, ненужные нам импульсы. Поэтому монтажу было особое внимание.

Первый экземпляр сделал я, второй один из наших монтажников, Грубник. А потом сборку преобразователей отдали на опытный завод ВНИИЭМ, и вот они стали делать абы как. И вот я ползал и раскладывал провода так, чтобы этот инвертор работал надёжно. На первую машину у нас ушло примерно три года.

Справились в итоге?

– Да. А потом вышла партия машин, которая эксплуатировалась на 34 автокомбинате, это 1974-78 годы. Для них преобразователи поставлял уже Краснодарский филиал ВНИИТА, там директором был Юрий Скоков. Тот самый, который потом политиком стал.

А зачем производство отдали в Краснодар? Ведь всего несколько штук нужно было этих преобразователей.

– Там много всего нужно делать: пайка, сварка, изготовление шин. А у нас не было людей для этого — один монтажник с помощником. Институт занимался закрытыми темами и никто из других отделов нам не помогал.

Сколько инверторов было сделано в Краснодаре?

– На все машины, которые эксплуатировались на 34-ом комбинате. Много, даже больше, чем нужно. Так что был запас.

страничка из буклета Кванта, отпечатанного в нескольких экземплярах под грифом «ДСП».

В Краснодаре сначала была та же история с качеством монтажа. Я когда туда приехал — ужаснулся. Они так напаяли, что пришлось опять останавливать производство и идти к главному инженеру. Договорился, что привезу монтажника, который покажет, как надо. Вызвал Грубника, он две недели там сидел и показывал, как монтировать, как разводить платы. Мы уже к этому времени разработали «косу» (отмеренную и сплетённую проводку), сами делали её, отдельно от преобразователя, потом распаивали по местам.

Преобразователь тяжёлым получился?

– Не очень, я легко поднимал его. Ну, может 50 кг вместе со всеми радиаторами. Мотор тоже перетаскивали вручную вдвоем.

Какая система управления была у этого преобразователя?

– По две платы в каждом выдвижном блоке. Система управления была на постоянном токе, 24 Вольта. Был еще однофазный инвертор, он отдельно питал систему управления. С общей шины нельзя было питание брать, потенциал-то нельзя поделить. И если где- то «коротнёт», то всё высокое напряжение «сядет» на систему управления. Так что для надёжности я её изолировал.

Конструкция системы управления менялась по мере совершенствования элементной базы. Сначала это были маломощные транзисторы и намоточные элементы, потом появились микросхемы и мы переделали схему на них, с помощью Харьковского политехнического института.

А что с рекуперацией? Это ведь самый сложный режим работы электромобиля.

– Рекуперацию начали отрабатывать, когда производство электроники передали в Краснодар. Этим занимались два других человека, один сейчас живёт в Америке, а второй умер на садовом участке, у меня на глазах.

Для управления машиной у нас сначала использовались две педали: движения (электрическая) и тормоза (обычная гидравлика). И дополнительно ставили тумблер на панель приборов, который нужно было включать, когда едешь накатом с горки или подтормаживаешь. Тогда двигатель переключался в генераторный режим и отдавал энергию батарее. Потом этот тумблер заменили обычной педалью, третьей. На одной штатной педали тормоза это сделать было нельзя, ведь нужно переключить частоту скольжения с добавления на вычитание.

Как тормозила машина в режиме рекуперации? Хватало тормозного момента?

– Тормозила двигателем машина очень эффективно. Я даже сам проехался и почувствовал, хоть и не шофер, у меня и прав-то никогда не было.

Сейчас, когда я еду на троллейбусе, всегда вижу, когда они переключаются на рекуперативное торможение с отдачей энергии в сеть. В сеть, конечно, труднее отдавать, чем аккумуляторам — потому, что кто-то должен эту энергию принять, другой троллейбус в режиме движения или подстанция должна пропустить этот ток, а там стоят выпрямители.

Наши водители охотно пользовались рекуперацией, а вот за шофёров на автокомбинате не скажу, не знаю. С Колчиным, его директором, мы редко общались, разве только когда иностранные делегации приезжали. Таких делегаций много было, и все просили преобразователь показать. Мы как-то уходили от этого, говорили, что там всё запаяно и нельзя разобрать. Не хотели показывать, в общем. Даже из Пентагона генерал какой-то приезжал. Мы с ним выехали на улицу на электромобиле, и он говорит: «Дайте я сам проеду!». Я растерялся, но дал всё-таки. Он проехал, вышел и говорит: «Замечательно!» Я и сам удивлялся, как послушно и ровно она шла.

Но было главное ограничение — батарея. Нам хотелось заряжать её ударным током! Чтобы ток прошел моментально и зарядил батарею. Чтобы шофер не ждал. Тогда нас, кажется в 1980-м, перевели во ВНИИИТ (институт источников тока) и разместили в отделении, которое занималось молекулярными накопителями. Для его сотрудников электромобиль – ненужная забава, они на космос работали. Но и нам никакой особой помощи от них не требовалось, у нас уже всё отлично работало. Только об одном просили: сделайте нормальную батарею. Пусть даже небольшой емкости, но заряжаться она должна мгновенно. Мы с этим и к руководству института вышли: раз нас взяли (а они очень этого хотели), то помогите с разработкой аккумуляторов. Но никто так ничего путного и не сделал.

На обычных аккумуляторах, которые нам Смолькова давала, мы проезжали примерно 70-80 км. Один раз Лидоренко, директор нашего нового института, распорядился дать нам на пробу серебряно-цинковую батарею ёмкостью 180 Ампер часов, разработки самого ВНИИИТА. Она была дико дорогой, так что это было скорее удовлетворение интереса, чем серьёзный эксперимент.

Мы ее поставили на электромобиль, целый день гоняли — не могли разрядить. Проехали около 350 км, потом плюнули и поставили машину в гараж. Эта была единственная батарея, которая позволила бы нормально эксплуатировать электромобиль. И она была легче, чем свинцовая.

Серебряно-цинковая батарея могла заряжаться большими токами?

– Не могу сказать. Мы заряжали от тех же зарядных устройств, что и обычные батареи.

Хотя-бы о мелкосерийном производстве такой батареи нельзя было договориться?

– Мы ведь до последнего планировали не мелко-, а крупносерийное производство! Целый парк машин, эксплуатировавшихся на 34-ом автокомбинате – это большой опыт, там отработали всю схему организации перевозок. Обучили водителей, механиков, построили зарядные станции в точках разгрузки. Так что цель была – продолжить это дело, перевести на электротягу весь развозной транспорт Москвы. Гоберман именно к этому стремился, помогая нам.

Как думаете, сейчас есть смысл вернуться к серебряно-цинковым батареям?

– Нет, конечно, сейчас на такое количество серебра вообще будет сверхцена. Никто не купит такой электромобиль.

Знаете, у меня был интересный опыт использования наших преобразователей и моторов для других целей, не транспортных. Так как мы числились в отделении молекулярных накопителей, от нас требовали, что бы мы их как-то использовали. И вот в Геленджике, где была лабораторная база ВНИИИТа, мы организовали испытательный стенд. Пробурили скважину, запустили туда насос на асинхронном двигателе и запитали всё это от солнечных батарей и молекулярных накопителей. Ночью насос питался запасённой энергией, а днём – от Солнца. Двигатель работал в воде и ничего плохого ему не делалось. Так что надёжность асинхронника была проверена ещё и в экстремальных условиях.

Мы ездили на всякие симпозиумы международные и они когда я начинал доклад — была тишина полная. Все слушали внимательно, что-то записывали, потом вопросы задавали. Тогда в моде были коллекторные моторы, асинхронные были вновинку. А сейчас в этом направлении работают почти все автомобилестроители.

– В двукратном преобразовании тока, которое нужно для питания асинхронника от батарей постоянного тока, все-таки теряется часть энергии?

– Теряется, да, и в инверторе теряется, на коммутацию, на закрытие, на открытие тиристоров. Но это мизерная энергия. Если брать высокочастотные тиристоры, то это меньше процента, я управлял импульсом в несколько микросекунд. Только в коммутирующем контуре потери. Конечно, они есть в конденсаторе, в дросселях. И в тиристоре самом. Но незначительные. Вот в троллейбусе преобразователь стоит, и что, там нет потерь? Ерунда это всё, на современной элементной базе такие потери можно даже не учитывать. Равно как и с преобразованием.

Что, кроме отсутствия подходящих аккумуляторов, мешало внедрению ваших разработок?

– Всё было построено на связях. В ЦК, в Политбюро. У нас был Гоберман, но даже ему не под силу оказалось пробить эту стену равнодушия.

Однажды один видный функционер прямо спросил меня, знаком ли я с Гейдаром Алиевым, был такой первый зам Председателя Совета Министров СССР, он курировал наши вопросы. «Нет, конечно» — говорю. «Тогда о внедрении в серийное производство можешь забыть».

Меня тянули в партию, даже вынудили два года отучиться на философском факультете института марксизма-ленинизма. Но в КПСС я так и не вступил. В конце восьмидесятых годов у нас ввели новую схему оформления трудоустройства – годовые контракты. Год заканчивался – и могли контракт продлить. А могли и не продлить. Это так боролись за дисциплину. Так вот, вызывает меня начальник отдела и торжественно говорит: Геннадий Алексеевич, ты принят во ВНИИИТ бессрочно! Я сказал «спасибо» — и ушёл на пенсию.

Как думаете, ваша разработка сейчас потеряла актуальность?

– Она никогда не потеряет актуальность, это будущее всего электротранспорта. Когда я ушел на пенсию, является ко мне один мой работник и говорит: «У нас состоялось научно-техническое совещание в отделе, и мы постановили: все дальнейшие работы будем вести по вашим схемам». Некая Борисова приехала и привезла мне выписку из протокола совещания. Потом наш начальник загорелся идеей делать прогулочные машины с молекулярными накопителями и солнечными батареями, якобы к нему даже заказчики потенциальные приезжали из Эмиратов. Машину такую сделали, но сделка не состоялась. Да и сама машина получилась так себе…

История электромобилей ВНИИЭМ – ВНИИИТ – НПО «Квант»

Первые электромобили на асинхронном тяговом двигателе были сделаны ВНИИЭМом в сотрудничестве с калиниградским ВНИИ электротранспорта в 1967-1970 годах. Это были два образца под именами ЭМО-1 и ЭМО-2. Параллельно этому построили два макетных образца на базах УАЗ-451 и УАЗ-452.

В 1970-72 годах в сотрудничестве с НИИАТ построили два образца развозных фургонов с пластиковым кузовом, по некоторым сведениям их дизайн принадлежит «перу» Юрия Долматовского.

Электромобили, созданные в сотрудничестве с НИИАТом.

Вот фрагмент случайно сохранившейся любительской киноплёнки, где запечатлена машина ВНИИЭМНИИАТ и её создатели:

Заметка из неведомой газеты середины 1970-х годов

В 1974-78 годах на ремонтно-производственной базе Главмосавтотранса собрали10 машин У-131, конвертированных из УАЗа-451ДМ. Там уже применялись специальные батареи НИИСТА 6ЭМ-60 с удельной энергоёмкостью 25 Втч/кг и допускавшие ускоренный заряд (в течении трёх часов не мене 60% ёмкости). Три такие машины приняли участие в ноябрьской демонстрации 1975 года, пройдя по Красной площади.


Скриншоты со случайно уцелевшей любительской киносъёмки демонстрации 1975 года

Они же были первыми, кто прошёл цикл испытаний на Дмитровском автополигоне. Максимальная скорость составила 70 км/ч, запас хода при 40 км/ч – 70 км, при движении по европейскому городскому циклу – 50 км. В 1977 году состоялись приёмочные испытания У-131 и было рекомендовано их дальнейшее производство (с рядом доработок).




У-131 были первыми машинами, поступившими в опытную эксплуатацию на 34-й автокомбинат Москвы. Там создали специальную зону для зарядки и обслуживания, а в местах разгрузки установили несколько дополнительных зарядных устройств. Средний пробег У-131 не превышал 40 км в день, так что заряда хватало, но водители автокомбината всё равно не очень любили электромобили: было несколько случаев остановки прямо в пути из-за нехватки энергии. Да и ломались они часто.

В 1978 году ВНИИЭМ совместно с РАФом конвертировал 2 экземпляра рижского микроавтобуса РАФ-22038, они тоже побывали на полигоне. Но до этого силами Главмосавторанса и ВНИИЭМа был сделан ЭлектроРАФик под условным названием «Буржуйский» Эту кличку он получил за шикарную отделку салона, сделанную на ЗиЛе, на том участке, где собирались правительственные лимузины.

РАФ-22038 Главмосавтотранса

Страница из отчёта об испытаниях электро-РАФа на Дмитровском полигоне

В 1977 году к теме подключился УАЗ, выпустивший свою первую партию электромобилей УАЗ-451МИ, представлявшего собой свободную фантазию на тему У-131. Они тоже поступили на 34-й автокомбинат, 9 октября 1978 года. РАФ тоже не остался в стороне, в 1978-79 годах собрав несколько машин 22038 и 22037 на постоянном и переменном токах. И, конечно, ВАЗ, который начал собирать развозные электорфургончики ВАЗ-2801на базе ВАЗ-2102. Но все эти работы прямого отношения к ВНИИЭМ не имели, упоминаем их лишь в контексте общей истории.

В 1980-ом, уже будучи под крылом ВНИИИТа, Зверев сотоварищи (Борис Павлушков, Николай Родионов и др.) начинают делать сильно модернизированный вариант У-131, названный УАЗ-3801. В работе участвовали завод Сатурн, УАЗ и сам ВНИИИТ в лице НПО «Квант» (именно в его структуре находились разработчики электромобилей). УАЗ-3801 было сделано более 50 шт, (58, если быть точным), большая часть из которых работала всё на том же 34-ом автокомбинате. Последнюю такую машину собрали в 1988 году. Один из «УАЗиков» сохранился в «Кванте» до настоящего времени, его можно увидеть на фотографии из депо «Москва-Киевская», на территории которого расположен один из офисов «Кванта».

Последним электромобилем, сделанным «Квантом» при СССР стал минимобиль с солнечной батареей, который упоминает Геннадий Зверев. Он предназначался для курортных зон, для неспешных прогулок с небольшой скоростью. Если говорить совсем честно, то один из расчётов делался на закрытые черноморские санатории, в которых отдыхали тогдашние партийные бонзы и члены ЦК. У «Кванта» к тому времени уже был некоторый опыт такого «сотрудничества»: один из электроРАФиков в конце семидесятых годов обслуживал как раз таких статусных отдыхающих в Форосе. Там же работал и опытный электротрактор.

Минимобиль получился очень концептуальным, но до ума его так и не довели. Один экземпляр худо-бедно ездил, второй так и остался макетом. Он и сейчас стоит в запасниках «Кванта». Кстати, дизайн минимобиля делали на ЗиЛе, вот только выяснить фамилию этого гения пока не удалось.

Минимобиль с солнечными элементами на крыше

Дальнейшая история электромобилей «Кванта» богата на разного рода эксперименты, но их описание уже выходит за отмеренные хронологические рамки. Скажем лишь, что до настоящего момента в «Кванте» придерживаются высоковольтной схемы переменного тока.

А вот киносъёмка той самой ноябрьской демонстрации 1975 года. Оператор явно впервые держал в руки камеру; но уж что есть… Сначала идёт чёрно-белый фрагмент, потом цветной.

Нравится(3 ) Не нравится(0 )

Электромобиль это автомобиль, который приходит в движение от одного или нескольких электродвигателей за счет автономного источника энергии (аккумулятора).

История:

Когда появился первый автомобиль с электромотором сейчас установить уже практически невозможно, в XIX веке достаточно много изобретателей конструировали различные модификации автомобилей, которые приводились в действие электродвижущей силой.

Но все же первое упоминание о появление такой конструкции есть, и оно приходится на 1828 г. тогда выходец из Венгрии Аньос Джедлик сконструировал маленький, примитивный электромобиль который больше напоминал современную доску для скейтборда, на которую установили электромотор.

К сожалению или нет, но тогдашнему буму развития автомобилей на электрической тяге мешала сложная система преобразования тока для подзарядки аккумуляторов, да и сами аккумуляторы были очень громоздкими, имели низкую плотность заряда и множество других несовершенств. К тому же электродвигатели сначала вступили в конкуренцию с паровыми двигателями, а в дальнейшем и с двигателями внутреннего сгорания. Устройство автомобиля с ДВС, после ряда доработок, стало в не конкуренции, почитайте об этом тут http://cars-repaer.ru . Только сейчас стало всё по серьёзному меняться.

Электрический аккумулятор:

Это источник электрического тока многоразового действия, в котором за счет обратимых химических процессов обеспечивается многократная зарядка и разрядка батареи.

Одной из главных проблем для современных электрических аккумуляторов и аккумуляторов для электромобилей, особенно это их, достаточно низкая емкость заряда. Для такого автономного устройства как электромобиль, которое должно передвигаться на большие расстояния и при этом должно обеспечивать такой же уровень комфорта, как и обычный автомобиль, емкость электрической батареи является критически важной.

Недостаточная емкость аккумулятора, не единственный существенный недостаток для электромобилей, так же существенным недостатком, мешающим массовому внедрению электромобилей является отсутствие необходимой инфраструктуры, в которую должны входить авто зарядные станции, и отдельные электрические сети так как обычные сети будут сильно перегружены при одновременной зарядке множества автомобилей.

Электродвигатель:

Электродвигатель это устройство, преобразующее электрическую энергию в механическую движущую силу.

Работа электродвигателя состоит в принципе электромагнитной индукции, это появление электрического тока при изменении магнитного поля в замкнутом контуре обмотки. Современные электродвигатели используются в самых разных отраслях промышленности и в быту, а также на электромобилях. В автомобилях на электрическом приводе чаще всего используются трехфазные двигатели переменного тока повышенной компактности и мощности. Электродвигатели обладают огромными преимуществами по сравнению с двигателями внутреннего сгорания это:

Экологически безопасный в эксплуатации

Малый вес и компактность

Простота в обслуживании и долговечность

Возможность перевода в режим генератора

Серьезных недостатков у автомобильных электродвигателей нет.

В последнее время крупные фирмы производящие электромобили стали использовать систему мотор-колесо. В это системе электродвигатель с различными агрегатами устанавливается непосредственно в колесо, которое отличается от обычного автомобильного колеса и имеет свою собственную конструкцию. Благодаря такому решению в конструкции автомобиля можно отказаться от трансмиссии как таковой, что приводит к упрощению строения электромобиля, его обслуживанию и снижению веса.

Недостатки и преимущества электромобилей:

Преимущества:

Простота технического обслуживания

Низкая пожаропасность при авариях

Более высокая экологичность при эксплуатации

Простота конструкции и долговечность работы деталей

Меньший шум и отсутствие вибраций

Высокая плавность хода и динамика

Недостатки:

Не достаточно высокая емкость современных электрических аккумуляторов и долгое время их заряда

Отсутствие соответствующей инфраструктуры

Высокая стоимость литиевых батарей

Большой вес свинцовых батарей и сложность их утилизации

Современные электромобили далеко ушли от своих предшественников, и ничем по комфортабельности не уступают автомобилям с двигателями внутреннего сгорания и гибридными двигателями, а по некоторым техническим и эксплуатационным характеристикам даже превосходят их. И уже не остается никаких сомнений, что электромобиль это автомобиль будущего причем не далекого, а самого ближайшего.

________________________________________________________________________

Последнее десятилетие электромобили уверенно завоевывают рынок автотранспортных средств.

Этому способствует множество факторов:

Массовый переход к электротранспорту тормозят следующие не полностью решенные проблемы и недостатки электромобилей:

  • низкая емкость аккумуляторных батарей, соответственно, небольшой пробег авто без подзарядки;
  • высокая стоимость блока аккумуляторов, недолговечность;
  • неразвитая сеть подзарядочных станций, большое время обслуживания (заряда) аккумуляторов даже в скоростном режиме;
  • наличие в электрических блоках управления и электропроводке высоких, опасных для водителя и пассажиров, напряжений;
  • утилизация аккумуляторных батарей электромобилей наносит вред окружающей среде;
  • большинство электронных блоков автомобилей, в том числе и аккумуляторная батарея, ремонтируются агрегатным методом, то есть заменяются полностью на исправные;
  • ресурс работы современных электродвигателей недостаточно большой;
  • работа системы отопления салона авто в холодное время года значительно увеличивает энергопотребление электромобиля;
  • остаются нерешенными проблемы использования электромобилей в грузоперевозках на дальние расстояния.

Очевидно, этот список значительно длиннее.

Разработчики ведущих автопроизводителей совершенствуют устройство электромобиля (электродвигатели, аккумуляторные батареи, зарядные станции и др.), приближая эру электротранспортных средств индивидуального пользования.

В терминологии автомобилестроения дается четкое понятие, что такое электромобиль: «Транспортное средство, основным движителем которого является электропривод».

Одним из основных преимуществ электродвигателя по сравнению с ДВС является высокий коэффициент полезного действия – до 95%. Считается, что электромобиль абсолютно экологичен. Это не совсем так. Производство электроэнергии в большинстве стран базируется на теплоэлектростанциях, которые сжигают топливо, нанося вред окружающей среде. Не менее опасны АЭС. Развитие рынка электромобилей рационально рассматривать с увеличением доли «зеленой» электроэнергии: солнечные батареи, энергия ветра и другие.

В системах авто с ДВС применяются в основном электродвигатели постоянного тока: стартеры, приводы щеток, вентиляторов, бензонасоса, различных регуляторов. Эти электродвигатели для передачи тока к вращающемуся ротору используют систему «щетки-коллектор», поэтому называются коллекторные. В электромобилях для обеспечения высокого вращающего момента необходимо протекание больших токов. Искрение щеток во время движения по ламелям коллектора приводят к преждевременному износу этой зоны. Поэтому в электромобилях обычно применяют бесколлекторные двигатели.

Для того чтобы уменьшить величину тока, протекающего через обмотки электродвигателя, согласно закону Ома, необходимо увеличивать питающее напряжение. В этом смысле наиболее эффективны трехфазные электродвигатели переменного тока: синхронные (например, на Mitsubishi i-MiEV) или асинхронные (на Chevrolet Volt).

Сейчас ведутся разработки высокоэффективных электродвигателей с минимальными размерами и массой. Привод от производителя Yasa Motors имеет массу 25 кг, достигая крутящего момента 650 Нм. Самый мощный электромобиль Venturi VBB-3 имеет электродвигатель 3 тыс. л. с.

Аккумуляторная батарея электромобиля

Тяговая аккумуляторная батарея электромобиля имеет существенные отличия от АКБ автомобилей с ДВС.
Прежде всего, выходное напряжение аккумуляторных батарей электромобилей с целью уменьшения токов, соответственно тепловых и энергопотерь, значительно выше, чем традиционные 12 вольт. Например, в первые автомобили марки Lola-Drayson разработчики выбирали аккумуляторные батареи емкостью 60 кВт*час номинальным напряжением 700 В. Нетрудно подсчитать, что при мощности электродвигателя 200 кВт такой автомобиль может проехать без подзаряда не более 15 минут. В условиях кольцевых автогонок на спортивных электрокарах необходимо производить замену аккумулятора чаще, чем колес. Гоночный электромобиль ближайшего будущего способен разогнаться до 100 км/час за одну секунду.

Большинство аккумуляторных батарей для электромобилей имеет встроенный контроллер процесса заряда батареи по аналогии с аккумуляторами для ноутбуков, только на более высоком уровне. Кроме этого, в мощные аккумуляторные блоки устанавливают встроенную систему жидкостного охлаждения, которая также увеличивает их массу.

Трансмиссия электромобилей

Один из положительных технических моментов при проектировании электромобилей – возможность упрощенной трансмиссии. Некоторые модели имеют одноступенчатый редуктор. В электромобилях с двигателями, вмонтированными в колеса (Active Wheel), трансмиссионная функция выполняется электронным методом. Это позволяет применить еще одну важную опцию: восполнение заряда аккумуляторной батареи в момент торможения «электродвигателем». Такой метод уже давно применяется в электротранспорте.

Особенность блоков управления электромобилей

Электрическая схема электромобиля имеет свои особенности в схемотехнике узлов контроля и управления. Большинство электрических систем в электромобилях строятся по традиционным схемам, рассчитанным на напряжение бортовой сети 12 В. Поэтому необходима установка в электромобиль дополнительной схемы инверторного преобразователя напряжения высокого напряжение аккумулятора в напряжение бортовой сети 12 В. В большинство моделей устанавливается дополнительная 12-вольтная аккумуляторная батарея небольшой емкости. Принцип работы основных систем электромобиля (ABS, ESP, кондиционера и других) не меняется.

Для обеспечения максимальной эффективности использования емкости аккумуляторной батареи климат-контроль автомобиля в холодное время года использует предподогрев от стационарных источников перед поездкой, затем энергия батареи расходуется только на поддержание температуры в салоне машины. Поэтому особое внимание конструкторы уделяют применению современных теплоизоляционных материалов в отделке салона. Актуально в этом смысле использование нанотехнологичных материалов.

Системы световых излучателей машины (повороты, ближний/дальний, габариты, салонные и другие) используются, в основном, светодиодного энергосберегающего типа. Принцип работы электрооборудования автомобиля основан на бесконтактных электронных системах управления.

Блок управления электродвигателем (двигателями) представляет, по сравнению с аналогичными блоками для ДВС, высокопроизводительный вычислительный комплекс, который контролирует работу большинства энергозначимых узлов с точки зрения достижения максимальной эффективности использования емкости аккумуляторной батареи. Он производит:

  • распределение энергии между электроприводами;
  • регулирование тяги;
  • мониторинг узлов и систем электромобиля;
  • управление динамикой авто;
  • контроль напряжений питания бортовых систем;
  • использование дистанционного мониторинга.

Электромобиль не роскошь

Перспективы электромобилей ближайшего будущего:

  • пробег без подзаряда до 500 км;
  • динамика разгона – менее 3 секунд до 100 км/час (легковые электромобили);
  • стоимость аккумуляторной батареи средней мощности – менее 7 тыс. USD;
  • время быстрого заряда – менее 15 минут.

Электромобиль ближайшего будущего будет оснащен беспилотными системами управления и навигации.


Если вы решили присоединиться к пока немногочисленной армии электромобилистов, прежде всего необходимо изучить, как работает электромобиль и его основные системы.

Несколько советов при решении задачи, какой электромобиль выбрать:

  • без пробега или с небольшим сроком эксплуатации, но с новой аккумуляторной батареей;
  • с опцией быстрого заряда аккумулятора;
  • со стажем выпуска модели не менее 2-х лет (за это время проблемы электромобилей данного модельного ряда успеют проявить себя).

Будущее – за электромобилями!

Электрический автомобиль, как показали статистические данные за текущий год, является очевидным будущим автопроизводства, причем ближайшим будущим. Многие всемирно известные автопроизводители вкладывают огромнейшие суммы в разработку электромобилей. Целю является желание сэкономить на нефтепродуктах, цена на которые систематически возрастает, а также необходимость снижения вредных выбросов в атмосферу и поиск новейших устройств хранения энергии, технологий энергопотребления.

В настоящее время крупнейшими рынками электромобилей являются Соединенные Штаты, Япония, Поднебесная и ряд стран Европы (Нидерланды, Германия, Норвегия,Франция,Великобритания). Производством электромобилей занимаются ряд марок, таких как Renault (Fluence Z.E. и ZOE),Nissan (Leaf, Toyota (RAV4EV), Ford (Focus Electric), Honda (FitEV) , BMW (Active C), Tesla (Roadster и Model S), Volvo (C30 Electric)), Mitsubishi (I MiEV). Если говорить о нашей стране, то 2015 год ознаменовался небывалым ростом продаж таких автомобилей, который составил 400% только за первые восемь месяцев текущего года.

Это говорит о том, что любителей экологичных стает все больше и больше: с января по август в стране, по данным МВД, зарегистрирован 231 электромобиль. Да, такая «новинка», несомненно, пришлась многим украинцам «по вкусу». А дело то в эффективном «электрическом зверьке», который, как говорится и денежку сэкономит и экологию побережет. Как вы уже догадались, разговор пойдет о электродвигателе. Давайте вместе разбираться «что это и с чем его едят».

1. Как устроен электромобиль?

Электромобиль, по сути, является транспортом, приводимым в движение одним или несколькими электромоторами. Внешне транспорт выглядит аналогично бензиновому, но есть одно очень важное отличие: бесшумный режим работы двигателя. «Тихоня»(так мы можем назвать электродвижок) питается от батареи (бывает солнечная, аккумуляторная или специализированный топливный элемент), которая исполняет функцию «топливного бака» и обеспечивает силовой агрегат энергией. Электромобиль также укомплектован контроллером – блоком, который управляет работой электродвигателя и регулирует потоки энергии в сети между аккумуляторами и двигателем. Все остальные компоненты практически такие же, что и в других автомобилей: , тормоза, подушки безопасности...

Для того, чтобы внедриться в принципы работы электромобиля, давайте рассмотрим технику переработки стандартного бензинового автомобиля на электрический. Такой автомобиль возродился от бензинового Geo Prism. Для того, чтобы переделать второй на электропривод, его внутренняя конструкция пережила небольшие перемены. Прежде всего, конструкторы произвели исключение бензинового движка, муфты сцепления, бензобака, выхлопных труб. «Механика» осталась на своем месте и заработала на второй передаче. Далее последовала установка контроллера и электродвигателя с переменным током. Свинцово-кислотные аккумуляторы были размещены на полу транспортного средства. Инженеры также произвели замену тормозной системы и оборудовали автомобиль усилителем руля, водяным насосом и системой кондиционирования. Вакуумный насос добавили для усовершенствования тормозной системы.

Трансмиссию подключили таким образом, чтобы при движении рычага, передавались сигналы на контроллер. Также, электромобиль оснастили зарядным устройством, вольтметром, двумя потенциометрами, подключив их к педали акселератора и контроллеру. В результате, конструктры получили электромобиль с такими характеристиками:

- пробег на единочном заряде батарей – 80 км;

Разгон до «сотни» за 15 секунд;

Сумма энергии, необходимой для перезарядки аккумуляторных батарей: 12 кВт/ч;

Сумарная масса батарей: 500 кг.

«Новачок» оказался прост в управлении, которое ничем не отличалось от аналогичного в автомобиле, использующем бензин.

Конструкция электромобиля имеет много плюсов. Дело в ее надежности, ведь в ней количество подвижных деталей и узлов сведено к минимуму. Для того, чтобы понять как устроен электромобиль, нужно прежде всего ближе познакомиться с его составляющими: трансмиссией, аккумулятором, электронной системой управления и специальным бортовым зарядным устройством. Начнем с первого. У данного экземпляра простейшая трансмиссия, так как на большинстве моделей она представляет собой простой одноступенчатый редуктор.

Если говорить о бортовом зарядном устройстве, то это довольно удобная «фишка» электромобиля, так как дает вам право рассматривать возможность зарядки транспорта от обычной розетки. С целью преобразования постоянного высокого напряжения в переменное, большинство производителей используют специальный инвертор. Он используется также с целью зарядки дополнительной батареи на 12 Вт. (она нужна для питания, к примеру, кондиционера, электроусилителя руля, или аудиосистемы).

Электронная система управления берет на себя ответственность за безопасность, энергосбережение и комфорт ездоков. Если покопать еще глубже, то такая система используется еще и с целью управления высоким напряжением, обеспечения нормального движения, регулировки тяги, контроля тормозной системы и расхода электроэнергии. Эта система включает в себя определенные входные датчики, блок управления и др..

Входные датчики выполняют функцию «оценщика» положения педали "газ" и "тормоз", селектора переключения передач, давления в системе тормоза, степени зарядки. Основные аспекты работы электромобиля (информация о потреблении энергии, восстановлении энергии, остаточный заряд аккумуляторной батареи) отображаются на панели приборов.

Важной составляющей «начинки» электромобиля является контроллер. Он получает токи от батарей и толкает их на электродвижок. С помощью двух потенциометров (переменных резисторов), которые находятся на педали акселератора, формируется сигнал, который «говорит» контроллеру, о количестве энергии, которую он должен транспортировать. Когда автомобиль находится в состоянии спокойствия, импульсы не передаются.

Как уже сообщалось, от бензинового автомобиля, электрический отличается бесшумной ездой. А все дело в частоте посылаемых контроллером импульсов - 15 тыс. раз в секунду. Человеческий слух почти не может уловить такой диапазон пульсации, поэтому движение автомобиля почти не сопровождается какими-либо звуками.

2. Электрические двигатели и аккумуляторные батареи

После того как мы рассмотрели дополнительные детали в конструкции автомобиля и более-менее поняли принцип его работы, мы переходим, непосредственно, к раскрытию темы нашей статьи, а именно к электродвигателю и работающей с ним в паре энергетической батареи. Электрический двигатель – это своеобразное «сердце» автомобиля и он также, как и другие «ипостаси» имеет ряд особенностей. Во первых, главной его функцией является создание , он способен пределать электрическую энергию в механическую.

Работа движка осуществляется по принципу электромагнитной индукции (возникновение электродвижущей силы в замкнутом контуре при изменении магнитного потока). В целом, электродвигатель представляет собой несколько трехфазных асинхронных либо синхронных электромашин, работа которых зависит от переменного тока. Стартовая составляет 15 кВт. Максималка способна достигнуть и 200 кВт. Эффективность электрической силовой установки и ДВС сопоставляется как 90% до 25%. Помимо этого, электрический агрегат имеет множество плюсов, среди которых возможность достижения максимального крутящего момента, двигаясь на любой скорости, а также простота конструкции, выгодное воздушное охлаждение и возможность эксплуатации без использования генератора..

На сегодня, популярностью пользуется эксплуатация мотор-колес. И не мудрено, ведь объединение обычного колеса и электродвижка в один агрегат повышает комфорт и легкость в управлении.

Плюсом движков переменного тока является способность к работе в режиме генератора на момент торможения транспорта, что способствует выработку энергии и сохранении ее в аккумуляторных батареях. Потом она может быть использована во время движения электромобиля и поспособствует повышению запаса хода на 15%. Много производителей используют в сборке некоторых моделей два и более электродвигателей. Таким образом конструкторы повышают силовую тягу, ведь в этом случае в движение приводится каждое колесо отдельно или несколько сразу. За таким ходом последует и сокращение трансмиссии, которое достигается встраиванием электродвигателей в колеса. Но, что бы не говорили, такой ход обусловит увеличение неподрессоренных масс и усложнит управление автомобилем.

«Подругой» электрического двигателя является аккумуляторная батарея. Ему без нее, как говорится, «ни туда и ни сюда». Она используется для обеспечения питания «сердца» автомобиля. В общем, разновидностей батарей очень много. Приобретение некоторых из них может влететь клиенту, как говорится, «в копеечку», ведь они отличаются завышенной ценой. Самый дешевый и, в следствии, самый популярный вариант - свинцово-кислотные батареи, которые на 97% поддаются повторной переработке. На ступеньку выше находятся никель-металлгибридные батареи, производительность и цена которых выше чем у свинцово-кислотных.

Идеальными для электромобилей являются литий-ионные батареи, так как в плане компактности, легкости и энергосбережении они способны превзойти первые два вида. Та же ситуация и с ценовой политикой, ведь данный вид батарей является наиболее дорогостоящим. Она представляет собой соединение нескольких модулей, которые вместе выдают 300 Вт систематического тока. Емкость батареи, как правило, прямопропорциональна к мощности двигателя. Срок действия батареи ограничивается на 7 лет.

Зачастую, многие автопроизводители оснащивают свои электромобили ещё одним небольшим дополнительным аккумулятором, который «оживляет» работу автомобильных аксессуаров: приборной панели, фар, автомагнитолы, подушек безопасности, электрических стеклоподъемников, стеклоочистителей и др.

В основном, в конструкции автомобилей на электрической тяге инженеры известных автопроизводств используют литий-ионные батареи. Именно в этом факте кроется главная причина высокой стоимости такого рода авто.

Большинство клиентов, как ни странно, предпочитают бензиновые автомобили, которые обойдутся им дешевле. Отталкивающее действие производит и длительное ожидание зарядки аккумулятора и не очень хорошая автономность. На сегодня, электромобили, в основном, эксплуатируются как транспорт для города. Стиль вождения, покрытие трассы оказывают сильное влияние на показатель автономности. Многие производители смогли добиться пробега в 150 км без дополнительной зарядки, но это при 70 км/ч. Если вы решили разогнаться до 130 км/ч, то вы проедете не более 70 км. В помощь водителю многие компании разработали специальные технологии, которые позволяют повысить автономность где-то до 300 км. Ранее упомянутое рекуперативное торможение, является одной из этих технологий и способно возвратить до 30% затраченной энергии.

3. Зарядка электрического автомобиля

Но все же, если вы уже решились на покупку электромобиля, первой хорошей новостью для вас станет тот факт, что на содержание такого автомобиля у вас уйдет в 3-4 раза меньше расходов, ведь они, в целом, зависят от стоимости электроэнергии. Всем же известно, что цена на нефтепродукты постоянно возрастает.

Сама зарядка включает в себя две цепи: цепь зарядки и цепь контроля зарядки. Вышеупомянутый контроллер способен отследить ток и температуру батареи, дабы свести время зарядки к минимуму. Это происходит во время сложной системы зарядки. Если брать зарядку ту что попроще, в таком случае напряжение или ток регулируются на основе предположений о характеристике батареи отслеживаются на основе регулируют их. К примеру, устройство для зарядки «втискивая» из себя максимальный показатель тока для зарядки электромобиля до 80%, вскоре по достижению этой отметки резко снижает поступление тока к концу зарядки. Все это хитромудро придумано для избежания перегрева батареи. Зарядка может «жить отдельной жизнью» и быть независимым от конструкции электромобиля блоком, или же быть всецело интегрированной в электрический транспорт.

Сразу после ценовой политики, многих покупателей волнует система зарядки автомобиля, ведь пробег транспортного средства на одном заряде батарей «затиснут» в определенные рамки. Как известно, неотъемлемой частью использования электромобиля является нужда в систематической зарядке аккумуляторной батареи, которая, в свою очередь, занимает не мало времени.

На деле, если диапазон пробега вашего «электромобильчика» не будет превышать 50-60 км ежедневно, вам нечего боятся. Но что, если вы любители дальних и длительных поездок? Не отчаивайтесь! Решений проблемы есть много. Во первых, электромобиль требует добротной зарядки аккумуляторной батареи, которую вы сможете осуществить с помощью бытовой электрической сети мощностью 3-3,5 кВт. Запомните, что нормальный заряд достигается только спустя восемь часов! Если вы не любите, или не можете ждать, то альтернативой для вас станет ускоренная зарядка, которая доступна на специальных станциях мощностью до 50 кВт. Так вы сможете зарядить своего «рысака» до 80% всего за 30 минут.

Еще одним способом станет элементарная замена разряженной аккумуляторной батареи на заряженную, которая может осуществиться на специальных станциях по обмену. Особой популярностью в развитых в этом плане странах пользуется система зарядки Magna-Charge.

Она состоит из двух ипостасей: зарядной станции, установленной на стене дома и системы зарядки, которая находится в багажнике электромобиля. Первая подключается к сети 240 вольт используя 40-ка амперный автомат. Другая использует для этого индуктивную панель (половинка трансформатора). Другая половина находится в отсеке за номером электромобиля. Таким образом данная система позволяет сделать заряд автомобиля более комфортным и быстрым.

Но опять же, все эти решения имеют место в том городе или стране, где прослеживается развитие инфраструктуры, а именно, тех самых зарядных и обменных станций и мест парковки.

" статьёй Автономное энергоснабжение: вечный двигатель . Где расскажем вам о том, что такое вечный двигатель — и каким он может стать в домашних условиях. А также предложим небольшую видео-демонстрацию одного из примеров.

Автономное энергоснабжение и вечный двигатель — это как два сапога пара. Только не реальные, а идеальные. Ведь, представьте себе, если бы существовали вечные двигатели, то автономное энергоснабжение дома было бы элементарным делом! Однако, существует ряд нюансов, которые препятствуют осуществлению этой мечты. Однако, с другой стороны, существуют и , как-таки решить этот вопрос.

Итак, начнём по порядку. Автономное энергоснабжение (система автономного электропитания, САП, САЭП) — это совокупность источников и систем преобразования электрической энергии, которые существуют автономно, независимо от центрального энергоснабжения, и питают отдельный небольшой обЪект, например, .

Система автономного электроснабжения (САЭ) может включать в себя:

  • источник электроэнергии; например: газо-, бензо- дизельную электростанцию или генератор, обязательно с электростартером, а также автономные источники питания от солнца или ветра
  • систему преобразования электроэнергии; — инвертор (обычно двунаправленный), служит для преобразования постоянного тока в переменный (220/380 В), а также для подзарядки батарей
  • систему автоматического пуска генератора (САП); (также называется: „устройство автоматического пуска“, „система автозапуска генератора“) — прибор для запуска генератора при пропадании внешней сети, либо по команде;
  • блок коммутации; — автоматика управления и слежения за системой;
  • аккумуляторные батареи; — для накопления электрической энергии
  • подвод внешней электроэнергии из сети;
  • стабилизатор напряжения

Другая часть темы статьи — вечный двигатель. Вечный двигатель (лат. Perpetuum Mobile) — воображаемое устройство, позволяющее получать полезную работу, большую, чем количество сообщённой ему энергии (КПД больше 100 %). Вечные двигатели бывают разными. Так, известны:

  1. Вечный двигатель первого рода — устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Согласно закону сохранения энергии, все попытки создать такой двигатель обречены на провал. Невозможность осуществления вечного двигателя первого рода постулируется в термодинамике как первое начало термодинамики.
  2. Вечный двигатель второго рода — машина, которая, будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел. Невозможность осуществления вечного двигателя второго рода постулируется в термодинамике в качестве одной из эквивалентных формулировок второго начала термодинамики.

Соответственно, если бы и существовали вечные двигатели, то они бы очень хорошо подошли бы для освещения и обогрева вашего дома. Однако, ни первый, ни второй род без вмешательства инопланетян пока не реализуемы 🙂

Тем не менее, успешно существуют вечные двигатели третьего рода . Которые как раз и могут быть установлены практически в любом жилище. И которые используются уже много тысяч лет посвящёнными.

Вечные двигатели третьего рода не претендуют на то, чтобы их коэффициент полезного действия был больше 100 %. И не претендуют на то, чтобы тепло от более холодных тел переходило к более горячим телам. Они претендуют лишь на потенциальную вечность — то есть, если энергию будет кому вырабатывать, то это будет происходить вечно. Ну, или, по крайней мере, достаточно долго.

Вы можете сказать: "Но, позвольте, таких вечных двигателей третьего рода вокруг полным полно!" И будете совершенно правы. Далее, вы можете сказать, что любой двигатель, допустим, внутреннего сгорания — это и есть вечный двигатель третьего рода. И здесь вы ошибётесь. Потому что двигатели, подобные двигателю внутреннего сгорания, изнашиваются намного быстрее, чем проходит вечность. Иногда даже быстрее, чем хорошие ботинки.

Тогда как мы ведём речь о вечных двигателях третьего рода, которые могут работать очень и очень долго. Конечно, "вечный" — это, собственно, перебор. Но "долгоиграющий" — это самое оно. Итак,

вечный двигатель третьего рода — это двигатель, который вырабатывает энергию усилиями человека (или нескольких людей).

Обратите внимание — не усилиями машин, воды, турбин, ветра. А именно человека. То есть, пока человек крутит, энергия вырабатывается. Перестали крутить, ушли покурить — и энергии нет.

Может возникнуть вопрос: "А в чём тут вечность?" Вечность в том, что из-за незначительности усилий, которые прикладывает человек, двигатель не будет быстро изнашиваться. И правильно построенный вечный двигатель третьего рода исправно послужит и вам, и вашим детям, и вашим внукам.

Вечный двигатель третьего рода имеет множество вариантов. Мы нашли один, наиболее реализуемый практически. О чём и предлагаем посмотреть небольшой видео-ролик:

umryyZQtFfw

Вот и вечный двигатель 🙂

Конечно, путём рассуждений и усовершенствований можно повысить КПД данной модели. Можно придумать более совершенную модель — ведь человек ходит по комнатам своего жилища целыми днями! Стоит как-то превратить это бесцельное хождение в выработку энергии — и вечный двигатель третьего рода реализован.

Итак, вечный двигатель третьего рода в перспективе организации автономного энергоснабжения дома — это очень полезная и легко реализуемая вещь.

И, кстати, по слухам, она уже давно используется на практике в промышленных масштабах:

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.